J. Infrared Millim. Waves

文章编号:1001-9014(2012)01-0001-04

Synthesis and properties of colloidal Cu₂CdSnS₄ nanocrystals

LIU Yu-Feng, GE Mei-Ying, LUO Hai-Han, SUN Yan, WU Jie, DAI Ning*

(National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics,

Chinese Academy of Sciences, Shanghai 200083, China)

Abstract: Colloidal Cu_2CdSnS_4 nanocrystals were synthesized by a facile solution chemistry method. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis-NIR absorbance spectroscopy measurements indicated that the Cu_2CdSnS_4 colloidal nanocrystals have uniform size-distribution and good crystalline quality with a tetrahedral coordinated structure. The stoichiometric ratio Cu/Cd/Sn/S is about 2.07:0.75:1.26:3.92 in Cu_2CdSnS_4 nanocrystals, and the chemical states of Cu, Cd, Sn and S elements are of +1, +2, +4 and -2, which correspond with the states in the molecular formula of Cu_2CdSnS_4 . The band gap of Cu_2CdSnS_4 nanocrystals is estimated to be ~ 1.3 eV by extrapolating method. **Key words**: colloidal nanocrystal; Cu_2CdSnS_4 ; photovoltaic materials; solar cell **PACS**:61. 46. Hk

胶体 Cu₂CdSnS₄ 纳米晶的合成与其性质研究

刘玉峰, 葛美英, 罗海瀚, 孙 艳, 吴 杰, 戴 宁* (中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083)

关 键 词:胶体纳米晶; Cu₂ CdSnS₄; 光伏材料; 太阳能电池 中**图分类号:** TN304 + . 2 **文献标识码:** A

Introduction

In the past decades, colloidal nanocrystals have been applied in nanocrystal-based lasers^[1], LEDs^[2] and photodetectors^[3]. Comparing with the traditional thin-films by using electro-deposition, co-sputtering, or co-evaporation^[4-5], colloidal nanocrystals-based thin films are flexible by means of dip coating or drop casting on the desired substrate^[6-8]. In addition, the roll-

Received date: 2011 - 03 - 08, revised date: 2011 - 04 - 07

to-roll processing based on colloidal nanocrystals is an important method for cost-effective and flexible solar cells. Therefore, the colloidal nanocrystal inks, including CuInSe $_2$, Cu (In, Ga)Se $_2$, CuInS $_2$, and Cu $_2$ Zn-SnS $_4^{[6-8]}$ are the most potential photovoltaic materials in the roll-to-roll processing for the cost-effective solar cells.

 $\text{Cu}_2\text{CdSnS}_4$ has a tetrahedral coordinated structure and a large absorption coefficient over 10^4 cm^{-1[9]}.

收稿日期:2011-03-08,修回日期:2011-04-07

Foundation item: Supported by National Basic Research Program of China (No. 2010CB933700 and 2011CBA00900), STCSM (No. 09ZR1436000) and the Knowledge Innovation Program of CAS (No. KSCX2-YW-G-042)

Biography: LIU Yu-Feng (1979-), male, Chifeng, China, PhD. Candidate. Research fields focus on nano - photovoltaic materials and devices. E-mail: yfliu@ mail. sitp. ac. cn.

^{*} Corresponding author: ndai@ mail. sitp. ac. cn.

The band gap of Cu₂CdSnS₄ is ~1.37 eV, near the optimum direct band gap of 1.5 eV for efficient light absorption^[10]. This makes Cu₂CdSnS₄ one of the most promising materials for photoelectric application. Moreover, thermoelectric properties of Cu₂CdSnS₄ and Cu₂ CdSnSe₄ have been explored and exploited^[11]. Due to their supply-abundant elements and excellent photoelectric properties, Cu₂ ZnSnS₄ and Cu (In, Ga) (Se, S)₂ (CIGS) nanocrystals have been widely prepared as alternative photovoltaic materials [6-8]. However, Cu₂ CdSnS4 nanocrystals and even thin-films are, to our knowledge, rarely reported^[9-10] though they are expected to be potential for the advanced photovoltaic and thermoelectric applications^[9-11]. Herein, we describe the preparation of colloidal Cu₂CdSnS₄ nanocrystals by using a facile solution chemistry method. All measurements including TEM, SEM, EDS, XRD, XPS and UV-vis-NIR indicated that the Cu₂ CdSnS₄ nanocrystals are good crystalline with a band gap of ~1.3 eV.

1 Experiment

All chemicals were used as received without any further purification. The reactions were performed under argon. In a typical synthesis of Cu₂CdSnS₄ nanocrystals, 0.5 mmol (0.0495 g) of copper (I) chloride (CuCl, ACROS, 99% extra pure purified), 0.25 mmol (0.065 g) of cadmium acetate hydrate ((CH₃ $(CO_2)_2 Cd \cdot xH_2O_3$, Aldrich, $\geq 99.99\%$), 0.25 mmol (30 µl) of tin (IV) chloride (SnCl₄, ACROS, 99%), 1 mmol (0.032 g) sulfur (S, ACROS, 99.999%) and 12 ml of oleylamine (C₁₈ H₃₇ N, AC-ROS, 80 ~ 90%) were added into a three neck flask connected to a Schlenk line. This precursor mixture was heated to 130℃ and degassed under argon flow for 30 minutes, and formed a dark-blue solution. Then, the reaction solution turned into black when heated and annealed at 300°C for 5 minutes. Finally, the production was taken out and injected into 40 ml of ethanol, and centrifuged at 8000 rmp/min for 5 minutes. The precipitates were collected and re-dispersed in chloroform, then 20 ml of acetone was added into the solution. The precipitates were re-collected and then redispersed in chloroform to form a stable solution after centrifuged at 12000 rmp/min for 3 minutes.

TEM images were taken on JEM-2100F equipped with Gatan 832 CCD at an accelerating voltage of 200 kV. TEM specimens were prepared by dropping Cu₂ CdSnS₄ nanocrystals dispersed in chloroform onto carbon-coated copper TEM grids. SEM image was acquired using FEI Sirion 200 with an energy dispersive X-ray analysis. XRD pattern was performed on Bruker D8 Discover X-ray diffractometer. XPS data were obtained using PHI 5000 VersaProbe X-ray photoelectron spectrometer for surface analysis. UV-vis-NIR absorbance spectrum was collected on a Lambda 900 (PerkinElmer) with a scanning velocity of 240 nm/min.

2 Results and discussion

Figure 1(a) and Figure 1(b) are TEM images and size distribution of typical Cu₂CdSnS₄ nanocrystals with an average size of 19.8 nm and a standard deviation of 1.8 nm. It is shown that the nanocrystals have uniform size distribution and slightly irregular shape. High resolution TEM (HRTEM, Figure 1 (c)) shows clear crystalline planes of a single Cu₂ CdSnS₄ nanocrystal. A polycrystalline-circle that results from the diffraction of different crystalline planes is shown in selected-area electron diffraction (Figure 1 (d)). The average diameter of Cu₂ CdSnS₄ nanocrystals is ~ 20 nm as shown in SEM image (Figure 2(a)), that is consistent with the result of TEM. EDS implies the stoichiometric ratio of Cu/Cd/Sn/S in nanocrystals is 2.07:0.75:1.26:3.92, which approaches 2:1:1:4 in Cu₂CdSnS₄ chemical formulation as depicted in Figure 2(b). The peak of silicon comes from the substrate.

The structure and chemical states of $\text{Cu}_2\,\text{CdSnS}_4$ nanocrystals are investigated by XRD and XPS. XRD pattern (Figure 3) indicates that the nanocrystals have a tetrahedral diffraction pattern (JCPDS 29-0506). In $\text{Cu}_2\,\text{CdSnS}_4$ each cation bonds to four sulfur anions, and each sulfur anion bonds to four cations to form a tetrahedral structure^[11]. There are nine diffraction peaks in XRD pattern corresponding to (110), (112), (200), (202), (114), (204), (312), (224) and (316) planes at $2\theta = 22.73^\circ$, 28.00°, 32.25°, 36.22°, 40.61°, 46.76°, 54.84°, 57.91° and 75.22°, respectively, in Figure 3. Meanwhile, the size of nanocrystals calculated from the full width at

Fig. 1 (a) Overview TEM image (b) the diameter distribution of nanocrystals derived from TEM image (c) HRTEM image of one Cu_2CdSnS_4 nanocrystal (d) selected-area electron diffraction (SAED) pattern

图 1 (a) 总体 TEM 图 (b) 根据 TEM 图得到的纳米晶粒径分布图 (c) 一个 Cu₂CdSnS₄纳米晶的 HRTEM 图 (d)选区电子衍射(SAED)图

Fig. 2 SEM (a) and EDS (b) of Cu_2CdSnS_4 nanocrystals. All samples were nanocrystal films and prepared on silicon substrates. The peak around 1.8eV in Fig. 2(b) is from silicon substrate

图 2 Cu_2CdSnS_4 纳米晶的 SEM(a)和 EDS(b)图. 所有的薄膜样品为纳米晶沉积在硅片衬底上形成的. 图 2(b)中硅峰来自衬底

half maximum (FWHM) of the (112) plane according to Scherrer formulation is 19.3 nm, consisting with the statistic result from TEM images.

Figure 4 presents the XPS results of four elements. The sulfur 2p3/2 and 2p1/2 peaks in the spectrum are located at 161.5 eV and 162.7 eV (Figure 4 (a)), which are consistent with the $160 \sim 164$ eV range for S in sulfides. The copper(I) XPS spectrum

Fig. 3 XRD pattern; XRD samples were nanocrystal films and prepared on monocrystalline silicon substrates 图 3 X 射线衍射谱; XRD 薄膜样品利用纳米晶在单晶硅衬底沉积上制备而成

(Figure 4(b)) shows two narrow and symmetric peaks at 932.1 eV and 952.0 eV, indicative of Cu(I) with a peak splitting of 19.9 eV in agreement with the standard splitting of 19.8 eV. The cadmium 2p peaks located at 404.9 eV and 411.7 eV show a peak separation of 6.8 eV, in agreement with the standard splitting of 6.76 eV, suggesting Cd(II) (Figure 4(c)). The tin 3d5/2 and 3d3/2 peaks located at 486.2 eV and 494. 6 eV, with a splitting of 8.4 eV indicates Sn(IV) (Figure 4 (d). The XPS of cadmium and tin with asymmetric peaks are resulted from the cadmium-deficient and tin-rich in composition. EDS implies the stoichiometric ratio of Cu/Cd/Sn/S in nanocrystals is about 2.07:0.75:1.26:3.92, which approaches 2:1: 1:4 in Cu₂ CdSnS₄ chemical formulation. Therefore, the main chemical states of four elements are +1, +2, +4 and -2, that correspond with the states in Cu₂CdSnS₄ chemical formulation (Figure 4).

The optical properties of $\text{Cu}_2\,\text{CdSnS}_4$ nanocrystals are characterized by UV-vis-NIR absorbance spectroscopy shown in Figure 5. It is estimated that the band gap of $\text{Cu}_2\,\text{CdSnS}_4$ nanocrystals is ~1.3 eV by plotting the square of the absorption coefficient α multiplied by the photon energy $h\nu$, versus $h\nu$ in the inset. The band gap of ~1.3 eV nearly corresponds with the value reported in the literature $(1.37 \text{ eV})^{[10]}$. It is shown that the nanocrystals are composed of pure $\text{Cu}_2\,\text{CdSnS}_4$ phase according to absorbance spectroscopy because the band gaps of CdS and $\text{Cu}_2\,\text{SnS}_3$ are 2.5 and 0.93 eV, respectively [12].

4

Fig. 4 XPS of Cu_2CdSnS_4 nanocrystals (a) S 2p3/2 and 2p1/2 peaks (b) Cu(I) 2p3/2 and 2p1/2 peaks (c) Cd 2p5/2 and 2p3/2 peaks (d) Cd 2p5/2 and 3d3/2 peaks 图 4 Cu_2CdSnS_4 纳米晶的 XPS 图 (a) 所有元素的 XPS 谱 (a) 硫的 2p3/2 和 2p1/2 峰 (b) 铜(I) 的 2p3/2 和 2p1/2 峰 (c) 镉的 2p5/2 和 2p3/2 (d) 锡的 3d5/2 和 3d3/2 峰

Fig. 5 UV-vis-NIR absorbance spectroscopy of $\text{Cu}_2\ \text{CdSnS}_4$ nanocrystals. The inset is plotted by $(\alpha h \nu)^2$ (the square of the absorption coefficient α multiplied by the photon energy $h \nu$) versus $h \nu$

图 5 $Cu_2 CdSnS_4$ 纳米晶的 UV-vis-NIR 吸收光谱. 插图以 $(\alpha h \nu)^2$ (吸收系数 α 和光子能量 $h \nu$ 乘积的平方) 和光子能量 $h \nu$ 为坐标作出

3 Conclusions

We have demonstrated the preparation of colloidal Cu₂CdSnS₄ nanocrystals by use of several ordinary precursors. TEM, SEM, EDS, XRD, XPS and UV-vis-NIR measurements indicate that the Cu₂CdSnS₄ nano-

crystals have been successfully synthesized with uniform size-distribution, good crystalline quality and tetrahedral coordinated structure. The stoichiometric ratio in nanocrystals of Cu/Cd/Sn/S is about 2.07:0.75:1. 26:3.92, and the chemical states of four elements Cu, Cd, Sn and S are of +1, +2, +4 and -2, which correspond with the chemical states of four elements in $\text{Cu}_2\text{CdSnS}_4$ molecular formula. It is estimated that the band gap of $\text{Cu}_2\text{CdSnS}_4$ nanocrystals is ~ 1. 3 eV according to UV-vis-NIR absorbance spectra.

REFERENCES

- [1] KLIMOV V I, MIKHAILOVSHY A A, XU S, et al. Optical gain and stimulated emission in nanocrystal quantum dots [J]. Science, 2000, 290:314-317.
- [2] ROGACH A L, GAPONIK N, LUPTON J M, et al. Light-emitting diodes with semiconductor nanocrystals [J]. Angew. Chem. Int. Ed., 2008, 47:6538-6549.
- [3] KLEIN D L, ROTH R, LIM A K L, et al. A single-electron transistor made from a cadmium selenide nanocrystal [J]. Nature, 1997, 389:699 - 701.
- [4] ENNAOUI A, LUX-STEINER M, WEBER A, et al. Cu_2 ZnSnS₄ thin film solar cells from electroplated precursors: novel low-cost perspective [J]. Thin Solid Films, 2009, 517;2511 2514.
- [5] KATAGIRI H, JIMBO K, MAW W S, et al. Development of CZTS-based thin film solar cells [J]. Thin Solid Films, 2009,517:2455-2460.
- [6] PANTHANI M G, AKHAVAN V, GOODFELLOW B, et al. Synthesis of CuInS₂, CuInSe₂, Cu (In_x Ga_{1-x}) Se₂ (CIGS) nanocrystal "inks' for printable photovoltaics[J]. J. Am. Chem. Soc. ,2008,130:16770 16777.
- [7] GUO Q, FORD G M, HILLHOUSE H W, et al. Sulfide nanocrystal inks for dense $Cu(In_xGa_{1-x})(S_{1-y}Se_y)_2$ absorber films and their photovoltaic performance [J]. Nano Lett., 2009, 9:3060 3065.
- [8] GUO Q, HILLHOUSE H W, AGRAWAL R. Synthesis of Cu₂ ZnSnS₄ nanocrystal ink and its use for solar cells [J]. J. Am. Chem. Soc. ,2009 ,131:11672 11673.
- [9] ITO K, NAKAZAWA T. Electrical and optical properties of stannite-type quaternary semiconductor thin films [J]. *Jpn. J. Appl. Phys.*, 1988, 27:2094 2097.
- [10] MATSUSHITA H, ICHIKAWA T, KATSUI A. Structural, thermodynamical and optical properties of Cu₂-II-IV-VI₄ quaternary compounds [J]. J Mater. Sci., 2005, 40; 2003–2005.
- [11] LIU M, CHEN I, HUANG F, et al. Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu₂ CdSnSe₄[J]. Adv. Mater. ,2009,21:3808 3812.
- [12] FIECHTER S, MARTINEZ M, SCHMIDT G, et al. Phase relations and optical properties of semiconducting ternary sulfides in the system Cu-Sn-S[J]. J. Phys. Chem. Solids, 2003, 64:1859 1862.