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Partial differential equation-based object extraction
from remote sensing imagery

LI Zhong-Bin, SHI Wen-Zhong "

(Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China)

Abstract: Object extraction is an essential task in remote sensing and geographical sciences. Previous studies main-
ly focused on the accuracy of object extraction method while little attention has been paid to improving their compu-
tational efficiency. For this reason, a partial differential equation ( PDE)-based framework for semi-automated ex-
traction of multiple types of objects from remote sensing imagery was proposed. The mathematical relationships a-
mong the traditional PDE-based methods, i.e. , level set method (LSM) , nonlinear diffusion (NLD) , and active
contour ( AC) were explored. It was found that both edge- and region-based PDEs are equally important for object
extraction and they are generalized into a unified framework based on the derived relationships. For computational
efficiency, the widely used curvature-based regularizing term is replaced by a scale space filtering. The effective-
ness and efficiency of the proposed methods were corroborated by a range of promising experiments.

Key words: active contour, building extraction, level set method, object extraction, partial differential equation,
nonlinear diffusion, road extraction
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ences'”’. For instance, it is beneficial to the timely up-

Introduction date of GIS database"’’ and the decision-making of the
urban planning. Generally, man-made objects in high

Man-made object extraction has always been an in- spatial resolution remote sensing images appear as homo-

tensive research topic in the field of applied Earth obser- geneous regions with similar spectral signatures. Howev-
vation'"). Tt is one of the most commonly used data ac- er, automatic detection of man-made objects is still a
quisition methods in remote sensing and geographical sci- challenging task. That is mainly because the complex
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scenes (e. g., bare land, cropland, vegetation, and
shorelines) often share common features (e. g. , geomet-
ric shape, radiometric intensity, or texture) with the de-
sired objects'**). Thus, there is a tremendous need to
develop more operational object extraction methods'®’.
This study primarily focuses on man-made object (i.e. ,
roads and buildings) extraction from optical images using
partial differential equation ( PDE)-based methods. The
aim of this paper is to propose practical semi-automated
methods that can reduce user’s load considerably.

PDE-based methods'”"?' have been widely used for
object extraction from remote sensing imagery. Previous
methods are mainly adapted from the region-based Chan-
Vese (CV) model'®’. Cao and Yang'”! incorporate the
fractal error metric and textural information into CV mod-
el for man-made object extraction from aerial images.
Similar idea can be found in Ref. [8]. In Ref. [9], a
region-based level set method (LSM) adapted from CV
model was used to extract roads, buildings, and airport
runways from satellite images. Xu, et al. "' integrated
intensity and texture information into CV model to extract
salient objects from satellite images. Kim and Shan''’
extracted building roofs from point cloud data using the
multiphase CV model. Ardila, et al. "> used the region-
based active contour to extract urban trees for change a-
nalysis. By contrast, edge-based methods have received
much less attention for object extraction over the past
decades. Laptev, et al. '™ used scale space theory and
an edge-based parametric snake for rural road network
extraction from aerial images. More recently, an edge-
based level set evolution has been used to extract build-
ing roofs from aerial images''®’ | in which the initial level
curves are generated using a corner detector. However,
it has difficulties in handling man-made objects that do
not have corners.

Fig.1 Road extraction results obtained by PDE-based methods
for road extraction. (a) Results of the model in Ref. [ 15] with
A, =X, =1. (b) Results of the proposed PDE-based method by
Eq. (5) using data term defined in Eq. (8) with A, = -1 and A,
= —6. Left: Original aerial images with extracted roads. Right:
Corresponding binary results
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Despite great efforts over the past years, it remains
challenging to develop an operational approach for man-
made object extraction from remote sensing imagery. Pre-

vious studies have been primarily focused on the accuracy
of object extraction and little attention has been paid to
improving the computational efficiency. In addition,
some existing methods are very sensitive to parameter
tuning. As shown in Fig. 1, different results are obtained
using CV model with different parameter values. Thus,
there is a need to develop new and practical methods for
object extraction from remote sensing imagery.

This paper is outlined as follows. Section II de-
scribes the presented PDE-based framework in detail.
Section Il presents experimental results, including the
qualitative and quantitative evaluations. Finally, the pa-
per ends up with discussions and conclusions in Section

Iv.
1 Methodology

In this section, a brief review of the previous pio-
neering PDE-based methods, i. e. , LSM'"") | nonlinear
diffusion (NLD) "™ | and active contour (AC)"™ ") is
provided. Next, the mathematical relationships among
these methods are explored in detail. Results indicate
that both edge- and region-based PDEs are equally im-
portant for object extraction and they are thus generalized
into a unified framework. For computational efficiency,
the evolving zero-level sets are regularized by using a
scale space filtering' ™' instead of the traditionally used
curvature term.

1.1 Previous work
1.1.1 Level set method

The basic idea behind LSM is to track and describe
the evolution of the zero-level set in a higher dimensional
level set function'”’. The original level set formulation is
given as follows;

b, = F(x) | Vo) ()
where ¢ is the level set function. ¢, is the partial deriva-
tive of ¢ with respect to the temporal variable t. k =div
(Vu/| Vul) is the mean curvature of the zero-level set
and F(k) is a function with respect to curvature k. F
(k) serves as not only the driving force in LSM ( Eq.
(1)), but also the regularization term to keep the mov-
ing zero-level set smooth.

1.1.2 Nonlinear diffusion

NLD proposed in Ref. [ 18] is given as follows:

w = g(16,x Tul)| Vuldin ) L(2)
where u, is the partial derivative of u with respect to the
time variable ¢; w is the image to be processed; Vu =

(u,,u,) is the gradient; Vu = ,/u’ +u’ is the magni-
tude of Vu; G_ is the Gaussian kernel with standard de-
viation g; * is the convolution operator; div is the di-
vergence operator; div( V w/| Vul) is the mean curva-
ture as before; and g( + ) is an edge detector with re-
spect to the gradient such as g (| Vu|) = 1/(1 +
| Vu!|?). In low-level vision, NLD (Eq. (2)) was
widely used for the noise removal. The term | Vu|div
( Vu/| Vul) diffuses along the boundaries but not
across them under the control of the stopping term g
(|G, vul)™'.
1.1.3 Edge-based active contour

The seminal parametric snakes was first proposed in
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Ref. [22]. However, it has difficulty in handling topolo-
gical changes naturally. In contrast, geometrical models
perform much better such as the edge-based active con-

tour (EAC) proposed in Ref. [19]:
b=l volldi( 7o)V . @

in which ¢ is the level set function as before. g is the
same as the one in NLD. Compared with NLD, EAC
(Eq. (3)) has one more positive real constant v, which
can keep the term div( V. ¢/ | V. |) +v always positive.
It is clear that EAC (Eq. (3)) is essentially equivalent
to NLD (Eq. (2)). The differences between them are
twofold; 1) the former is originally developed for object
extraction, whereas the latter is proposed for noise re-
moval, and 2) the former often chooses signed distance
function as level set function; whereas the latter often u-
ses the original image as level set function.
1.1.4 Region-based active contour

In practical applications, EAC often suffers from
limitations, e.g. , 1) it is sensitive to noises and 2) it
cannot extract the interior edges. To address these is-
sues, region-based active contour ( RAC)
posed' "

s pro-

b, =6.(d)

[Mdiv(%)_” -1 - Cl)2 + A, (1, - C2)2]
, (4)

in which §,( - ) is the Dirac function; u=0,v=0, and
Ay ,A, >0 are free parameters; [ is the original image;
and ¢, ,c, are intensity means inside and outside the zero-
level set, respectively. Although RAC (Eq. (4)) is
more advantageous than EAC, it also suffers from limita-
tions. For instance, there are too many parameters in
Eq. (4) that need to be tuned repeatedly before it can be
employed in practical applications. However, it is often
labor-intensive and time-consuming to obtain the optimal
parameter values.

1.2 The proposed method

Based on the above analysis, some unexpected
mathematical relationships among LSM'"'  NLD'®',
EAC'™) | and RAC'™ can be derived as follows:

1) NLD and EAC are theoretically equivalent when
the level set function in Eq. (3) equals the image in Eq.
(2), i.e., p=u.

2) PDE-based methods (i. e., NLD, EAC, and
RAC) can be viewed as further developments of LSM,
though they are derived from different mathematical mod-
els. In contrast to LSM, NLD and EAC take advantage of
the edge detector g( + ) as stopping term, whereas RAC
employs intensity means as the stopping term.

3) As can be seen, when g( ng * Vul) =1, Eq.
(2) becomes Eq. (1). When g =1 and v =0, Eq. (3)
becomes Eq. (1). In addition, Eq. (4) becomes Eq.
(1) when §,(¢p) =| V|, w=1, A, =A, =v=0.

4) All the aforementioned PDE-based methods can
be implemented using finite difference scheme.

The unexpected relationships mentioned above make
it easier to understand the essences of PDE-based meth-
ods. It is worth mentioning that the Dirac function §, in
Eq. (4) can be replaced by | V ) |13 In addition, ac-
cording to the theory in Ref. [23 ], it is mathematically

sound to replace the curvature term div ( V¢/ | V)
commonly used in traditional PDE-based methods by the
scale space filtering. It has been proved that the best fil-
tering for constructing scale space is the Gaussian kernel
G, Based on all these facts, it can be found that
both edge- and region-based PDE-based approaches are
equally important in practical applications, and thus,
they are generalized into the following unified framework .
o = G, wsign(l, + At x F | v D .(5)
where (i,j) denotes spatial position; n means iteration
number; sign( + ) is the sign function; At is the time
step; and F is the data term that is used to guide active
contours toward desired object boundaries. In Eq. (5),
d)?,/ is defined as follows:
d)‘?_ - {C()’if(i,j) e R, (6)
o - ¢, ,otherwise ’
in which ¢, >0 is a constant. It is fixed at 1 in this stud-
y. R, is an arbitrarily given region (i.e. , the initial ze-
ro-level set) in the image domain. Essentially, PDE
(Eq. (5)) can be regarded as a further development of
the seminal LSM, which is the most basic component of
the popular methods NLD, EAC, and RAC. F in Eq.
(1) is a function with regard to the curvature of zero-lev-
el set, whereas F in Eq. (5) is a generic data term that
can be specifically written as follows ;
Fp=g(G, x[vI]) , (D
Fy :_/\1(1_61)2+)\2(1_02>2 , (8)
where F, and F, are edge- and region-based data terms,
respectively. [ is the image to be processed. In fact, da-
ta terms defined by Eqs. (7) and (8) are derived from
EAC and RAC, respectively. Despite this, it leads to a
considerable improvement of the original LSM. That is
corroborated by the following experiments.
1.3 The implementation of the proposed method

PDE is an iterative process that exploits finite differ-
ence scheme to approximate its solution. Before its im-
plementation, initial zero-level sets need to be given in
the desired object regions interactively. In this paper, for
numerical stability, scale space technique is used to reg-
ularize the evolving zero-level sets. The basic idea of this
technique is to convolve the level set function with a
scale space filtering from coarser to finer scales'”’. With
the increase of the scale parameter o, the level set func-
tion becomes coarser and smoother, and noises disappear
in coarser scales. In this respect, it is very useful for
edge-based PDE-based methods such as NLD and EAC
as they are often sensitive to noise.

However, different from PDE methods NLD and
EAC, in which the scale space filtering is mainly used
for noise removal, PDE Eq. (5) mainly utilizes scale
space filtering to convolve the iterated level set function,
thus 1) removing small spurious objects and 2) making
the level set function regular during evolution.

Overall, the advantages of the proposed PDE-based
method over other existing methods in the following three
aspects:

1) LSM does not take into account data term. This
means that it cannot be used for object extraction direct-
ly. In contrast, the proposed PDE Eq. (5) takes advan-
tage of the image features (e. g., the edge detector in
Eq. (7) and the intensity mean in Eq. (8) to drive the
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zero-level set toward desired object boundaries.

2) To maintain the moving zero-level set smooth,
the traditional approaches represented by Eqs. (14) ex-
ploit the curvature of the zero-level set; the proposed
method (Eq. (5)), in contrast, uses the scale space fil-
tering to convolve the zero-level set directly.

3) For numerical stability, traditionally methods
can only use a very small time step, and thus, they often
consume too much CPU time. By contrast, the proposed
method can use a relatively larger time step due to the re-
moval of the curvature. In this respect, it is computa-
tionally much more efficient.

In the next section, a range of experiments is dem-
onstrated to verify the effectiveness of the proposed meth-

od.
2 Experiments

2.1 Dataset and experiment setup

In this experiment, six remote sensing images ac-
quired from different sensors were used to test the pro-
posed methods. As shown in Figs. 2 and 3, they are
named R_1, R_2, B_1, B_2, S_1, and S_2 (R, B,
and S denote road, building, and stadium) , respective-
ly. They all contain three bands (i.e., R, G, and B),
except for R_2 that just has the panchromatic band. As
shown in the figures, road networks in R_1 and R_2
have opposite intensities. Building in B_1 is very noisy.
Stadiums in S_1 and S_2 have different illuminations and
there are intensity variations inside the stadium in R_2.
In addition, as all the desired objects are characterized
by different shapes, they can be used to validate the ca-
pability of the proposed method to extract objects without
the need of the geometrical a priori information. The de-
tailed information of these images is given in Table 1. To
corroborate the advantages of the proposed method, it
was compared with EAC and RAC in all the experi-
ments. All the experimental results were compared with
ground truths qualitatively and quantitatively. Ground
truths are generated by manual delineation. For quantita-
tive evaluation, three indices are used''®’, i.e., Com-
pleteness = TP, /TP, , Completeness = TP,/TP,, and
Completeness = TP, /TP, ., in which TP, is the total
pixel number of the extracted object that is matched with
the ground truth, TP, is the total pixel number of the
ground truth, TP, is the total pixel number of the extrac-
ted object, and TP, is the total pixel number of the
ground truth that is unmatched with the extracted object.
The proposed algorithms were run under MATLAB
R2013a 64 b in Windows 7 OS with Intel(R) Core(TM)
i7-3770 CPU @ 3. 40 GHz, 16 GB RAM. The source
code will be publicly available at http://www. lIsgi.

Table 3 Quantitative results of the test methods

polyu. edu. hk/academic_staff/ John. Shi/index. htm.

Table 1 Dataset description (SR means spatial resolution)

x1 BEEHRASRRTIZESPE)
Images Sensor site Location
(SR: meter) (pixel x pixel)
R_1 (0.1) Aerial 1722 x2321 Indiana, USA
R_2 (0.5) Worldview - 1 267 x439 N/A
B_1 (0.5) Pleiades - 1 291 x265 Washington, USA
B_2 (0.5) Pleiades - 1 329 x 334 Melbourne, Australia
S_1(0.5) Pleiades - 1 532 x519 Fortaleza, Brazil
S 2(0.5) Pleiades - 1 463 x529 Salvador, Brazil

Table 2 Parameter values used in each test methods

®2 SNRAEFFANSEE

Images  EAC (3) RAC (4) PDE (7) PDE (8)

RI A1=0.2,0=3 ”MA’(ISA:ST}(; r1=lay=l o=l = -1y -6
R2 M=0.2,0=3 p=di=0.5020, = -1 hy=1 ay=lop=l o=l =Ap=]

B A=0.2,0=3 p=bi=0.5,020,, = -1 dy=1 ¢, =1.5,0p=1.5 g=1.54, =),z

B2 At=0.2,0=3 p=4=0.50=0,0;=1,4,=1 ¢,=L5,0,=15 o=15A;=),=1

1 A=02,0=3 p=dr=05,0=0 0, =10,=1 0,215,015 ¢=154,=),z1

$2 M=0.2,023 p=A=0.50=00, 210,21 0,=15,0,=L5 o=15,4, 2,21

2.2 Parameter tuning

All the parameters used in the test methods are lis-
ted in Table 2. The parameter values in EAC and RAC
are determined via trial and error. The free parameters
A, and A, in RAC have significant impacts on final re-
sults. Sometimes they are not equal to each other such as
in the experiment of R_1 (see Fig. 1). Throughout the
experiments, the template size of the Gaussian kernel is
fixed as 9 x 9. Generally, the use of a relatively larger
time step At can expedite the iteration of PDE-based
methods. However, it may lead to unstable numerical re-
sults. To obtain stable results using traditional methods
such as NLD, EAC, and RAC, the time step should be
sufficiently small due to the curvature term div ( Vu/
| Vul) or div( V¢/| Ve |). Thus, a relatively small
time step is often utilized. By contrast, due to the remov-
al of the curvature term in the proposed PDE, the time
step can be chosen as up to 40 for both the edge- and re-
gion-based PDEs (Eqs. (7) and (8) ). Nevertheless, it
is fixed at 18 for stable results in all the experiments. In
addition, it is worth noting that edge-based model de-
fined with Eq. (7) use the Gaussian kernel twice: once
for the noise removal of the original image and once for
the regularization of the zero-level set. Thus, there are
two scale parameters g, and o, need to be tuned for Eq.
(7). However, experiments show that the optimal pa-

=3 MWRAAFENEETMER

Indices Completeness (% ) Correctness( % ) Quality (% )

Images R_I R2 B_1 B2 S_1 S2 R_I R2 B_1 B2 S_1 S2 R_1 R2 B_1 B2 S_1 S2
EAC (3) 96.4 79.3 78.0 92.0 97.7 32,7 8.9 87.7 8.6 97.7 98.6 985 75.8 64.9 66.1 8.1 95.1 32.4
RAC (4) 97.3 93.6 86.3 97.6  97.0 99.7 75.4 90.9 92.8 95.0 99.5 98.8 60.3 77.9  75.9 88.5 96.1 97.3
PDE (7) 97.4 71.0 73.4 76.8 87.0 96.0 98.4 97.7 99.9  99.9 100 100  94.5 68.6 73.3 76.8 87.0 96.0
PDE (8) 97.6 92.8 89.0 93.5 956 99.0 94.0 8.0 91.3 9.0 99.0 98.7 86.7 741 76.1 78.9 93.8 96.4
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rameter values are readily available.

Fig.2 Results for road extraction with different methods.
(a) Aerial image R_1 with the bright road. (b) Satellite im-
age R_2 with the dark road. From left to right: original ima-
ges with green initial zero-level sets, results of EAC(3),
RAC(4) ,edge--based and region-based PDE, and the ground
truths, respectively

B2 frfr A5 v Y B SR AR (a) SRR RCL A
HSEE % (b) TR EIME R_2 I (Ll . 22 8047 . Jtdn
FIEFIZR G R R UG %K P-4, BAC(3) B 45 2R, RAC(4) )
4558 ,PDE(7) &5 4t ,PDE(8) K451, IS % (H

Fig.3 Results of the test methods for building extraction from
satellite images. (a) Building B_1 with heavy noises. (b)
Building B_2 with complicated backgrounds. (c) Bright hom-
ogeneous stadium S_1. (d) Dark heterogeneous stadium S_2.
From left to right. original images with green initial zero-level
sets, results of EAC(3),RAC (4), edge--based and region-
based PDE, and the ground truths, respectively

P33 A T s i R S SR B R () A M 1 50
Py B_L. (b) ARZAERHHEFY B_2. (o) IR A H
B S_1. (d) BB TR E 1R S_2. NZEFIA SR PG Fns
ORI % KP4, EAC(3) B4R, RAC (4) 1945 R, PDE
(7) &5, PDE(8) K458, MIZ % (1

2.3 Qualitative evaluation

As presented in Figs. 2-3, the proposed PDEs are
capable of extracting multiple types of man-made objects
from optical images. All the initial zero-level sets in the

experiments are manually provided inside the object re-
gions.

Figure 2 shows how the proposed methods can ex-
tract bright and dark roads from images R_1 and R_2,
respectively. Despite the over-detection in some areas,
they can extract the road networks completely. Different
from the model in Ref. [15], which extracts the neigh-
boring sideways (see Fig. 1), the proposed methods can
extract the desired road networks accurately. As can be
seen, over-detection occurs in the results of EAC and
RAC in R_1. In addition, EAC cannot obtain the com-
plete dark road network in R_2.

Figure 3 shows how they can extract the buildings
and stadiums without the need of a priori geometric infor-
mation. As shown in the figures, the proposed methods
are capable of extracting the rectangular building with
heavy noises from image B_1, and noises are automati-
cally filtered out by the scale-space filtering, as presen-
ted in Fig.3(a). The specific scale parameters o, , and
o, are given in Table 2. Also, they successfully extract
the building immersed in the complex backgrounds from
image B_2, examining Fig.3(b). In addition, they are
able to extract the elliptic stadiums from images S_1 and
S_2 accurately, as presented in Fig. 3(¢) and (d). The
stadium in S_1 is bright and homogeneous, whereas the
one in S_2 is relatively dark and heterogeneous. Despite
this, the proposed PDEs can extract them accurately. By
contrast, EAC performs relatively poor. It cannot extract
the building in B_1 completely, and it only extracts part
of the stadium in S_2 due to the heavy intensity varia-
tions.

Table 4 Running times of the test methods (unit: second)

x4 W FERIEITEE (BAL-FD)

Images R_1 R2 B_1 B2 S_1 S2
EAC (3) 7991.6 98.8 80.0 23.0 375.5 517.2
RAC (4) 359.5 25.7 10.3 4.1 52.4 46.5
PDE (7)  230.5 0.7 0.7 0.3 2.2 3.5
PDE (8)  293.1 1.0 0.6 0.3 3.1 2.7

2.4 Quantitative evaluation

The quantitative evaluation results of the proposed
PDEs for man-made object extraction are given in Table
II. Overall, they have comparable quality to the tradi-
tional methods (i.e., EAC and RAC) in all the experi-
ments. In comparison with the edge-based methods (i.
e. EAC and PDE (7)), region-based methods (i. e.
RAC and PDE (8)) have better completeness. That is
mainly because the original images need to be smoothed
by scale space filtering in edge-based methods, and
thus, edges become blurred and their locations are shif-
ted in some sense. However, this denoising step is un-
necessary in region-based methods. Sometimes the cor-
rectness of region-based methods is not as great as edge-
based methods, as indicated by the bold text in Table 3.
That is because region-based methods often detect neigh-
boring undesired objects that are spectrally similar to the
desired ones. From the perspective of quality, the per-
formance of the proposed edge-based PDE method is not
as great as other methods in B_2 and S_1. However, it
outperforms EAC in other experiments. In addition, the
proposed region-based PDE method clearly excels RAC
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in experiments of R_1. However, they have similar per-
formance in other experiments. In terms of running time,
the proposed methods outperform EAC and RAC signifi-
cantly, as shown in Table 4. In all the experiments, the
proposed edge-based method is 35, 141, 114, 77, 171,
and 148 times faster than EAC; the proposed region-
based method is 12, 26, 17, 14, 17, and 17 times fas-
ter than RAC. Thus, the proposed methods are computa-
tionally much more efficient than the traditional methods.

3 Discussion and conclusion

This paper has presented a PDE-based unified
framework for object extraction from remote sensing im-
agery. Essentially, the framework is derived from the un-
expected relationships among the traditional level set
method (LSM) , nonlinear diffusion (NLD), and active
contour (AC). The curvature term widely used in tradi-
tional PDE-based methods is replaced by the scale space
filtering in the new framework, which makes it possible
to use a larger time step in the numerical scheme. Mean-
while, this scale space filtering can keep the moving ze-
ro-level sets regular while filtering out noises. The pro-
posed framework is finally implemented by using finite
difference scheme. Experiments indicate that it is com-
putationally much more efficient than previous methods
while obtaining comparable performance.

In future research, it would be necessary to auto-
mate the proposed PDE-based methods. Also, it would
be interesting to improve traditional PDE-based methods
such as NLD and LSM by taking advantage of texture and
spatial contexture information. Finally, the attention can
be paid to extracting natural objects such as tree crown,
cropland, and forest from remote sensing imagery.
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