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A broad stop-band filter based on multilayer metamaterials in the THz regime
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Abstract: A periodic multilayer structure of metal and dielectric layer has been proposed and studied to gain a stop-
band filter in the THz range. A broad stop-band has been realized through making use of polarization hybridization.
The bandwidth of the stop-band filter can be tunable in a large range through electric-magnetic couplings in silver
layers. The influences of the number of metal layer, the lattice constant and the permittivity of dielectric layer on
the central frequency and stop-bandwidth have been studied. The central frequency would be blue-shifted and stop-
bandwidth can be expanded through selecting these parameters appropriately. The bandwidth tunability which can
be worked through the coupling effect provides good guidance for designing broad stop-band filter.
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Metamaterials can be made up of structural metallic and

Introduction dielectric layers, either supported by a suitable substrate

or free standing. Many species of unit cells based on

Metamaterials have attracted enormous researchers’ metamaterials have been proposed during the past few

interest in recent years because of their unique electro- years, such as cut-wire pairs "*/ and metallic split ring

magnetic properties available in natural materials''’. resonators °'. More and more optical devices based on
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metamaterials have been investigated, such as perfect ab-
sorbers'*! | perfect lens °' | imaging '°! | and filters '"®'.
Recently , some researchers have been focused on the THz
stop-band filter which is designed to filter specific fre-
quencies of wave propagating and ensure high tolerances
well to frequency operations in the THz range'*’. Howev-
er, many stop-band filters do not work well in eliminating
the interfering signals or suppression of undesired respon-
ses in the THz region. The resonant stop-band is always
too narrow, which significantly limits these filters appli-
cation in filtering broadband radiation. The resonant na-
ture of these structural stop-band filters leads to the ap-
pearance of several resonant dips in the stop-band, and
thus results reduction of the stop-bandwidth. It is impor-
tant to design and provide a broad stop-band filter with
few resonant dips in stop-band. Moreover, the designed
stop-band filter can be fabricated practical, with high-ef-
ficiency broad stop-band. Motivated by these reasons dis-
cussed above, a Square-Ring-Square-Patch structure
(SRSP) has been designed in this paper. The stop-
bandwidth and central frequency of the filter is tunable
by adjusting the number of metal layer, the lattice con-
stant and the permittivity of dielectric layer. Moreover,
resonance modes in the stop-band interact and couple to-
gether, which means that the stop-bandwidth of filter can
be expanded by adjusting these factors without worrying
about the appearing of new resonance dips. The filter can
be designed to select stop-bandwidth in the THz regime
and can be manufactured practically.

1 Structures and Design

A unit cell of a SRSP structure was designed in this
paper as the basic microstructure of stop-band filter, as
illustrates in Fig. 1. The multilayer microstructure con-
sists of one dielectric layer and two silver layers. Silver
layers are separated by the dielectric layer. Each silver
layer is perforated with an array of square-loop-cross-
shaped metal strips. The chosen strip pattern is a sym-
metric and simple structure, which exhibits excellent low
transmission. The dielectric layer is selected as SU-8 in
simulation. The dimensional parameters are:P =20 pm,
L1 =18 pm, [2 =12 pm, L3 =4 pm, hl =0.2 pm,
h2 =5 pm. The SRSP structure with these dimensions
can be fabricated in practice through electron-beam li-
thography or focus-ion-beam milling' "’ .

The commercial software Ansoft HFSS13.0 was em-
ployed to find the potential physics behind the transmit-
tance band. The electric field is in the y axis (E) and
the magnetic field is in the x axis (H). The polarized
wave propagates along the z axis (k). In simulation, two
ideal electric conductor planes have been used on the
boundary normal to the y axis and two ideal magnetic
conductor planes has been utilized on the boundary nor-
mal to the x axis''"). The dielectric constant of SU-8 is
2.56 +0.035;"* and the Drude model is used to de-
scribe the dielectric constant of the silver layer:

2

e(w) =1 -2 . (1)
W - Wy

here, w, =1.37 x 10" s7' is the plasma frequency and

3]

vp =9 x 10" s is the collision frequency 31 respec-

Fig.1 (a) The top view of a unit cell; (b) the side view of a
unit cell for n =2. The yellow part is silver layer, and the gray
part is dielectric layer
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tively.
2 Simulated results

Simulated results with different number of silver lay-
ers (n) are shown in Fig. 2. A stop-band appears in the
transmission spectra with n increasing. Figure 2 (a)
shows the simulated transmission with the unit cell of a
single silver layer and a single SU-8 layer. The stop-
band dip locates at f, =4.82 THz, which corresponds to
a single resonance dip and the stop-bandwidth is Af=0.
31 THz. In this paper, the stop-bandwidth is defined as
Af = (fugn —/fiw) » and the central frequency is defined as
Seen = (frow +frign )72 (the fi is defined as the lower-fre-
quency point at which 4% energy transmits through the
SRSP structure and the f,,, is defined as the higher-fre-
quency point at which 4% energy transmits). A typical
stop-band filter can be obtained through stacking a silver
layer and a SU-8 layer. However, the bandwidth is too
narrow to be used for filtering broadband radiation effec-
tively. In order to expand the stop-bandwidth, the n is
increased. For n =2, the stop-band dip is expanded to
Af=3.92 THz. The central frequency is locates at f, =
5.08 THz. A typical broad stop-band filter has been ob-
tained by increasing the number of silver layer. This
means that the designed structure is valid. The expanded
stop-bandwidth and the blue-shifted of the central fre-
quency is consistent in the case of n =3, n=4, n=5,
see the dashed line. The result in Fig. 3 reveals that the
value of n has an important influence on the property of
the filter.

3 Discussion for SRSP structure filter

Recently, many researchers focus on exploring the
interaction between wave and periodical structures''’.
To gain insight into the mechanism which leads to the
broad stop-band, the resonance modes for n =3 has been
investigated in the near-field. At the resonance frequency
fo=5.5 THz, the distribution of electric field is similar
in each layer. The resonance intensity is obviously de-
creased from the top to the underneath layer, as illustra-
ted in Fig. 4 (a-c). To study the resonance modes in
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Fig.2 Simulated transmittance spectra of filter with different
number of silver layers: (a) n=1; (b) n=2; (c) n=3;
(d) n=4; (e) n=5
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n=2; (c) n=3; (d) n=4; (e) n=5

Fig. 4 (a), different frequency have been selected for
investigating the distribution of the resonance mode. On
the one hand, when the frequency is low, such as f, =2
THz, the resonance mode exhibits a strong coupling be-
tween two adjacent unit cells, as shown in Fig. 4(d).
On the other hand, when the frequency is high, such as
Jfo =9 THz, the resonance mode reveals inward coupling
between the Square-Ring and the Square-Patch, as
shown in Fig. 4(f). It can be found that when the reso-
nance frequency is out of the stop-band range, there is
only one resonance mode. Finally, when the frequency is
within the stop-band range, such as f, =5.5 THz, the
two resonance modes in each plane start to interact and
couple together and thus produces the plasmonic hybrid-
ization, as shown in Fig. 4(e). It is obvious that both of
the two hybridized resonance modes are strong. The
transmission out of the stop-band is higher than 0. 25
with the dielectric loss, as shown in Fig. 2(c). It is the
same as the transmission within the stop-band range.
However, the enhanced electric resistance caused by the
polarization hybridization in the stop-band range also de-
creases the transmission too. It can be found that the lat-
eral plasmonic hybridization is the main reason which
leads to the broad stop-band.

In fact, in addition to the number of silver layers,
the variation of permittivity of dielectric layer and lattice
constant have great effects on the optical response of the
stop-band filter. In the following, the effects of these two
parameters are investigated. To illustrate interaction be-
tween adjacent unit cells, the transmission spectra of dif-
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Fig. 3 (a) Stop-bandwidth of filter with different

number of silver layers: (a) n=1; (b) n=2; (c¢) n
=3; (d) n=4; (e) n=5; (b) Central frequency of
filter with different number of silver layers: (a) n=1;
(b) n=2; (¢) n=3; (d) n=4; (e) n=5
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ferent lattice constant for n =3 are plotted in Fig. 6. The
stop-bandwidth is increased from Af=3.05 THz to Af=
4.6 THz with lattice constant reducing. On the other
hand, the permittivity of dielectric layer has been de-
creased from £ =3 to £ =1.5, as shown in Fig. 7. It can
be found that the primary effect of varying the dielectric
is to blue-sifted the central frequency and stop-band
broadened. Moreover, the multilayer electron-beam li-
thography technique can be used to manufacture the SR-
SP structure [ 10]. It means that the fabrication of CRR
structure filter is feasible and practical.
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Fig.4 (a) ~ (c) Simulated distributions of the electric field
in the top, middle, and underneath layers at f; =5.5 THz, re-
spectively. (d) ~ (e) Simulated distributions of the electric
field in the top layer of CRR structure at frequencies of 2,
5.5, and 9 THz, respectively.
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Fig.5 Simulated transmission spectra of different lattice
constant with n =3
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4 Conclusions

A broad stop-band filter has been designed, simula-
ted, and explained in the THz regime. Results indicate
that a broad stop-band filter can be realized by stacking
layers of silver layers and SU-8 layers. The stop-band-
width and central frequency can be tunable by adjusting
the number of metal layers, the lattice constant and the
permittivity of dielectric layer. The mechanism behind
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Fig.6 Simulated transmission spectra of different dielectric
constant with n =3
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the stop-band is the plasmonic hybridization of adjacent
unit cells coupling resonance mode and inward coupling
mode, which would prohibit appearing of new resonance
dips. The stability in the stop-band transmission response
of the SRSP structure filter enables its use in many THz
optical devices.
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