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MEASUREMENT OF THE FREQUENCY SPECTRUM OF
A SUBMILLIMETER CW SOURCE BY HETERODYNE
MIXING AND DIRECT DETECTION

SHEN Xiao-Fang, YAO Qi-Jun, LIN Zhen-Hui, SHI Sheng-Cai
( Purple Mountain Observatory, NAOC, CAS, Nanjing 210008, China)

Abstract:Ii is of particular interest to characterize the frequency spectrum of signal sources at submillimeter wavelengths.
The heterodyne-mixing and direct-detection ( Fourier transform spectrometer, FTS) methods were introduced to measure the
frequency spectrum of a submillimeter CW source ( phase-locked and tunahle from 460-520 GHz). A 500-GHz supercon-
ductor-insulator-superconductor ( SIS) tunnel junction was employed as a mixer for the former method but a direct detector
for the latter. The measurement results are compared.
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Introduction

It is well known that the submillimeter region (i.
e., THz) is rich in scientific and technological oppor-
tunities. But it remains to be fully explored owing to
the technological difficulty. Developing a robust source
technology, capable of operating in this region, is one
of significant technological challenges. There are a
multitude of approaches to the submillimeter source
problem (e. g., fundamental solid-state oscillators,

harmonic generation from lower frequency sources, and
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mixing from optical sources). It is of particular interest
to characterize the spectral characteristics (e. g.,
spectral shape, frequency stability, and power stabili-
ty) of submillimeter sources to make use of them in ar-
eas such as radio astronomy, atmospheric research,
and laboratory spectroscopy.

A 500-GHz CW submillimeter source is investiga-
ted here. The submillimeter source indeed consists of a
solid-state Gunn oscillator ( phase locked and tunable
from 77-87 GHz) and a six-time (x2x3) multiplier,
giving a frequency coverage of 460-520 GHz ( produced
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bv Radiometer Physics GmbH, Germany). With a
phase-lock-loop included, the Gunn oscillator should
have sufficiently high frequency and power stabilities.
In this paper, we focus on the characterization of the
spectral shape of the 500-GHz CW source ( after the
multiplier) .

There are two kinds of techniques adopted com-
monly to measure the frequency spectrum of high-fre-
quency CW sources, i. e. , heterodyne mixing and direct
detection. The heterodyne-mixing method employs a
mixer (with a local-oscillator signal ) to down convert
the output signal of the measured source into an 1F sig-
nal that is able to be measured by conventional spectrum
analyzers, while the direct-detection method measures it
straightforwardly with the aid of a Fourier transform

spectrometer equipped with a sensitive detector.

1 Spectrum measurement by direct detec-
tion

For the direct-detection method, as introduced be-
fore, an FTS system is necessary to measure the fre-
quency spectrum of the 500-GHz CW source. Hence
we constructed an FTS system with a conventional de-
sign ' ', As shown in Fig. 1, the key component of
the FTS system is a Martin-Puplett interferometer
(MP1), which is composed of two rooftop mirrors ( one
fixed and the other movable) and a wire grid (as a
beam splitter) and is located in between the 500-GHz
CW source and a signal detector. With a monochromat-
ic signal of wavenumber ¢, and intensity B( o) inci-
dent on the MPI, and when the movable rooftop mirror
scans, the MPI produces an interferogram of an inten-
sity given by I(x) = B(oy)[1 +cos(2mo,x) ]. Here
x designates the optical-path difference between the two
arms of the MPI. Obviously, the source distribution B

(o,) can be recovered by the inverse Fourier trans-
form, B(o,) = J; I(x)cos(2moyx)dx .

To detect the output signal of the MP1, we adopt-

") with a frequency re-

ed a superconducting SIS mixer
sponse centered around 500 GHz. In fact, we meas-
ured the change of dc current of the SIS junction, bi-
ased at 1.5 mV (of a dark current of 13.7 wA), when

a chopper (of a chopping frequency of 80 Hz) modula-
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Fig.1 Schematic view of an FTS system
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ted two incident signals, 1. e., the 500-GHz CW
source and a room-temperature load. Such a sensitive
detector can ensure small signals to be detected easily.
The measured current change was then amplified and
recorded by a lock-in-amplifier ( LIA). The frequency
spectrum of the CW source can be recovered by the in-
verse Fourier transform of an interferogram, 1. e., the
measured current change as a function of the optical-
path difference of the MPI.

The 500-GHz CW source was measured with this
FTS system for 486 GHz. Notice that the MPI was
scanned only once in a step-by-step movement of the
mirror , with each step having a 3-second sampling time
to average out the noise. A step motor was used to
drive the moveable rooftop mirror whose position was
recorded accurately by a linear encoder. The step dis-
tance and maximum travel length of the movable rooftop
mirror were set at 75 um and 75 mm, respectively, to
have a 2-GHz frequency resolution and the highest
measurable frequency of 1 THz (to cover possible out-
put of harmonics other than 6). Fig.2 exhibits the fre-
quency spectrums of the 500-GHz CW source measured
at 486 GHz. Obviously, it has a good signal-to-noise
ratio and is rather pure without other harmonics exis-
ted. It should be pointed out that the scanning time
must be increased considerably to observe a frequency
spectrum of higher resolution (from GHz to MHz, for

example) .
2  Spectrum measurement by heterodyne
mixing

With an additional CW source ( as a local oscilla-
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Fig. 2 Frequency spectrum of the 500-GHz CW
source at 486 GHz measured by direct-detection
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tor) being able to output a signal close to 500 GHz and
sufficiently strong for mixer pumping, it is convenient
to measure the frequency spectrum of the 500-GHz CW
source by the heterodyne-mixing method. A BWO
( backward-wave oscillator) of frequency coverage of
460-700 GHz and a power level of several mw was cho-
sen. The 500-GHz superconducting SIS mixer was em-
ployed again, but as a mixer. The measured 500-GHz
CW source was first downconverted into an IF ( inter-
mediate frequency) signal and then amplified by an IF
chain, which consists of a cooled HEMT ( high electron
mobility transistor) low-noise amplifier, a room-tem-
perature amplifier, and a band-pass filter (1.56 0.3
GHz). The IF signal was monitored by a spectrum an-
alyzer (HP E4408B). The overall view of the meas-
urement setup is shown in Fig. 3. For this measurement
we set the measured CW source at 486 GHz ( by its
phase-locked function) as the BWO frequency was not
precisely calibrated. Then we adjusted the cathode
voltage (i.e., frequency) of the BWO to have an out-
put IF signal fall into the coverage of the IF band-pass
filter. By observing the movement direction of the IF
spectrum, we found that the BWO indeed had a higher
frequency. Fig. 4 demonstrates the frequency spectrum
of the 500-GHz CW source at 486 GHz. Obviously,
the corresponding frequency of the BWO is 487. 546
GHz.

3 Conclusion

We have successfully measured the frequency

Fig. 3 Overall view of the measurement setup of
heterodyne mixing
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Fig. 4  Frequency spectrum of the 500-GHz CW
source at 486 GHz by heterodyne mixing
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spectrum of a 500-GHz CW source using the hetero-
dyne-mixing and direct-detection methods. The hetero-
dyne-mixing method is fast and it has high resolution
( several MHz) , but needs an additional source ( LO).
Furthermore, the measurable frequency coverage is
rather limited and the quality of the measured frequen-
cy spectrum depends strongly upon the frequency and
power stabilities of the LO source. By contrast, the di-
rect-detection method is rather straightforward. But its
measurement time is much longer, especially for high-

resolution measurement.
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