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Rotation-invariant infrared aerial target identification based on SRC
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Abstract. Aircraft identification is implemented on thermal images acquired from ground-to-air infrared cameras.
SRC is proved to be an effective image classifier robust to noise, which is quite suitable for thermal image tasks.
However, rotation invariance is challenging requirements in this task. To solve this issue, a method is proposed
to compute the target main orientation firstly, then rotate the target to a reference direction. Secondly, an over-
complete dictionary is learned from histogram of oriented gradient features of these rotated targets. Thirdly, a
sparse representation model is introduced and the identification problem is converted to a /,-minimization prob-
lem. Finally, different aircraft types are predicted based on an evaluation index, which is called residual error.
To validate the aircraft identification method, a recorded infrared aircraft dataset is implemented in an airfield.
Experimental results show that the proposed method achieves 98. 3% accuracy, and recovers the identity beyond
80% accuracy even when the test images are corrupted at 50%.
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Introduction cations. In aeronautics applications, aircraft are the

main targets to surveil. Especially in ground-to-air appli-

Infrared target recognition and classification are sig- cations, a system which has good performance at anti-

nificant parts in video surveillance and aeronautics appli- jamming, fast identification friend or foe and stable track-
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ing capability is extremely required. Comparing with visi-
ble light cameras, which are restricted by the necessity
of clear meteorological conditions, infrared cameras
show superiority of robustness to illumination and weath-
er conditions. However, in infrared aerial identification
task, particularly in ground-to-air applications, targets
generally occupy several pixels in imaging device and
has not that much information of figures. Besides,
clouds occlusion and large pose variation also increase
the difficulty of identification. Due to these reasons, we
must extract as much information as possible from finite
data.

According to the principle of target identification,
conventional algorithms are usually divided into three
steps: Firstly, find the regions of interest in image se-
quences. Then extract their features and finally predict
different types of these targets using specific classifiers.
In our previous work, the targets are already detected, so
our concentration is to identify to which of predefined air-
craft types the target belongs.

In feature extraction field, plenty of creative meth-
ods have been proposed, which are based on either man-
ual design (e. g. , SIFT'"', SURF*', HOG"") or learning
(e. g., bag-of-words™ , neural networks”™ ). Among
these approaches, learning-based methods require suffi-
cient labeled data. This is tough for our work because the
cost of IR aircraft images is very expensive, especially
for jets. As for SIFT and SURF methods, they focus on
the description of interest points, so these two descrip-
tors are more suited for tasks which need to check match-
ing degree between key points, such as image matching
and image retrieval. HOG feature is widely used in ob-
ject recognition and classification and proves to be very
robust in related works. However, target rotation and
pose variation are instrumental in ground-to-air IR imag-
es while HOG feature is clearly not rotation-invariant. To
handle this problem, Takacs et al '*' proposed a rotation-
invariant descriptor which introduces the radial gradient
transform in polar coordinates. Some similar configura-
tions are proposed in recent works . Nevertheless,
These HOG descriptors in polar coordinates reject infor-
mation of local image regions and target direction. Anoth-
er solution to target rotation is data augmentation, which
means rotating training samples to different angles in
learning process. However, this will lead to high compu-
tational complexity and not meet the requirement to real-
time tasks. In contrary to these methodologies, we ad-
dress the rotation invariant issue by incorporating the con-
cept of main orientation into HOG descriptor. The detail
is to be presented in section 11.

In classification methods, existing aircraft classifi-
cation algorithms mainly based on the nearest feature,
support vector machine (SVM) or neural networks.
Among them, methods based on neural networks are the
research focus in recent years, plenty of architectures
based on deep convolutional neural networks are pro-
posed, and they achieve outstanding performance. How-
ever, these architectures are trained on large number of
images with refined annotations, which is quite costly for

us as mentioned before. Sparse Representation Classifi-
cation (SRC) seeks a sparse coefficient of an equation in
which the image is represented by this coefficient accord-
ing to an overcomplete dictionary, then performs classifi-
cation process by checking which class outputs the least
reconstruction error. Therefore, SRC has the advantage
of both neural networks and nearest feature classifier. In
the work of Wright et al """, SRC is proved to remain
100% recognition rate even when the image is corrupted
by 60%. This prominent performance is quite suitable
for IR aircraft identification due to the serious noise in IR
images. For now, SRC is mostly used in face recognition
3 Tt has never been applied in aircraft identification ,
so we were interested in how it performs in predicting air-
craft types. The nearest feature and SVM are typical
small sample learning algorithms and have excellent clas-
sification performance, so we also test them in our work
as a contrast.

The remainder of this article is organized as follows.
In section II, we propose the rotation-invariant HOG fea-
tures based on main orientation. Then we present a brief
introduction of Sparse Representation Classification and
dictionary learning. Afterwards, we illustrate the perfor-
mance of our algorithm in experiments. In conclusion
and future section, we make a summary of our work and
give the suggestions for future work.

1 Proposed Method

Figure 1 illustrates the flowchart of our identifica-
tion method. It consists of two stages: dictionary con-
struction and target identification. In dictionary construc-
tion section, we firstly compute the main orientations of
training samples depending on the gradient information,
then rotate these samples to the reference direction. Af-
terwards, we extract HOG features from the rotated sam-
ples to construct the initial dictionary. To improve the
classification ability of this dictionary, we incorporate
FDDL, a dictionary learning method into dictionary con-
struction. In target identification section, the target is al-
so rotated to the reference direction based on its main ori-
entation. Then we extract its HOG feature and compute
its sparse representation coefficients from the dictionary
constructed ahead. At last this target is identified de-
pending on its smallest reconstruction error.

1.1 Main Orientation Extraction

There is a specific character of IR aircraft targets:
aeroengine shows the strongest thermal radiation. Based
on this character, we define the main orientation of a tar-
get is largely based on its aeroengine. Detailed process of
main orientation extraction is as follows.

Step 1:Gradient magnitude and orientation computation

Consider a pixel located at position (x,y) where x
indicates the row position and y indicates the column po-
sition, let /(x,y ) denotes the intensity value of pixel lo-
cated at (x,y). The gradient magnitude M and gradient
orientation 6 of each pixel are calculated as the formulas
below

|M(xy)|=/Cixy)+ GE(xy) ., (1)



580 AN/ RSO S g o 38 &
training samples
compute main
orientations
HOG features .
dictionary leamingl E
rotation based on feature u com
. . . . H pute
||| - main 0r1entat10ns“| extraction | — : output
.—. = X Jll—| reconstruction
. error
targets to be
classified feature overcomplete dictionary ]
sparse rep;esentation
coefficients
Fig. 1 Framework of the proposed identification method
1 ohhas i BARM 73 285 iR
G,(xy) N highest bin:
_ v ghest bin:
0(x,y)=tan"' (———) , (2) r 180°~210°
G, (x,y ) L, J main orientation:
S % e T e
where G, represents the gradient values in horizontal di- ‘ )
. . . . highest bin:
rection and G, represents the gradient values in vertical 120°~150°

direction. G, and G, are defined as follows

Gh(xvy)zl(x+lvy)_l(x_lay) ’
G (vy)=1(xy+1)=I(xy-1)

Step 2:Gradient vote,

Use the gradient orientation of an image to weighted
vote into n corresponding orientation bins equally spaced
between 0° and 360°, the vote is weighted by the intensi-
ty value of pixels. Then midpoint of the highest orienta-

(3)
(4)

tion bin is the main orientation of this target.

For instance, let us set n to 12, as is shown in
Fig. 2, main orientation of target (a) is 195°, which is
the midpoint of 180° and 210°. In the same operation,
main orientation of target (b) is 135° and main orienta-
tion of target (¢) is 45°. On the basis of Eq. (2) (3)
and (4) , positive direction is clockwise direction. In
Fig. 2, the direction of green arrow is the reference direc-
tion (3 o’ clock direction) , and direction of orange arrow
is the main orientation of targets. After the targets are ro-
tated in anti-clockwise direction according to their main
orientation, they would be in almost the same direction.
However, it is notable that there might be a subtle differ-
ence between rotated targets, just like (b) and (c¢) in
Fig. 2. Although HOG features have invariant descrip-
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Fig. 2 Rotation according to main orientation. Green arrow:
reference direction. Orange arrow: main orientation of this target
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rotated targets

tion in a small angle rotation, we want to know how small
the difference is acceptable in our identification task, so
a series of experiments is conducted. The results are
showed in Table 1.

In this experiment, we manually rotate all the test
images to different angles varying from 3° to 24°, corre-
spondingly, number of orientation bins is varied from
120 to 15. As is shown in Table 1, when the rotation an-
gle is within 12°, identification accuracy remains stable
beyond 90%. Therefore, 30 is the suitable number of ro-
tation bins we choose to do gradient weighted vote.

Table 1 identification accuracy according to different rotation degrees
R1 AEEERHETREREILL
rotation degree 3° 5° 7.5° 10° 12° 15° 20° 24°
number of rotations 120 72 48 36 30 24 18 15
accuracy 95. 7% 95. 1% 93. 8% 92. 8% 91. 4% 88. 1% 77. 4% 62. 8%
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1.2 Histograms of Oriented Gradients

The main idea behind HOG is that any shape or lo-
cal object in an image can be well discriminated by
knowledge of only edge direction and without knowing
their actual position''". Process of HOG feature extrac-
tion is shown in Fig. 3. First, we compute the gradient
magnitude and orientation. Then we divide the image in-
to cells, use the gradient orientation 6 to vote into 9 cor-
responding orientation bins equally spaced between 0°
and 180°, the vote is weighted by gradient magnitude M.
To enhance illumination invariant ability, we normalize
all the histograms which are calculated over cells in a
block with an overlapping of 50%. At last the HOG fea-
ture descriptor of the target is constructed by linking all
HOG features of blocks together. This is the final eigen-
vector for classification process.
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Fig. 3 HOG extraction from an IR aerial target
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1.3 Sparse Representation—based classification

Sparse representation is successfully used for face
recognition and fingerprint classification mainly be-
cause the sparsest representation is naturally discrimi-
native : among all subsets of base vectors, it selects
the subset which most compactly expresses the input
signal and rejects all other possible but less compact
representations' . Besides, sparse representation not
only can find the inner information in just a small amount
of model data but also performs robustness to occlusion or
corruption. The conventional framework for Sparse Rep-
resentation Classification can be divided into three steps:
dictionary construction, sparse representation and identi-
ty prediction. In this article we incorporate dictionary
learning method into SRC process to improve the classifi-
cation ability of the dictionary. The process is as follows.
Step 1:dictionary initialization

Suppose we have ¢ different classes and each class
contains m training samples. Feature vector f € R repre-
sents a training image and A, =[ f,,fio,** fin]€ R,
(k=1,2,--
kth class. In other words, A, represents a sub-dictionary
for class k. Then we define a new matrix of dictionary
A € R"" as the concatenation of sub-dictionaries from all

,c) 1s the matrix of training images from the

the classes
A=[A A, Al=] fifr Sl AE Rdxnv (5)

A is the initial dictionary for the next step.
Step 2:dictionary learning

Dictionary learning is to learn from the training sam-
ples so that given signals could be well represented using
the optimized dictionary. Many dictionary learning meth-
ods have been proposed in the past few years such as
MOD'" | K-SVD'"® and FDDL'"'. However, MOD and
K-SVD are not suitable for classification tasks because
they only require that the learned dictionary can well rep-
resent training samples, ignoring their classification abil-
ity. Yang"®' proposed a dictionary learning framework
called FDDL which uses the Fisher discrimination criteri-
on to get an optimized dictionary. In this algorithm,
sparse coding coefficients have small within-class scatter
but large between-class scatter. Meanwhile, each sub-
dictionary for class k is able to well represent the training
samples from the corresponding class. In contrast, they
have poor ability to represent other classes. Therefore,
we use FDDL as the learning method to optimize our dic-
tionary. The objective function of FDDL model is

min Y r(A.DX) + A X[+ A, f(X)
X

](D.,X) = arg
(DX) i=l |

. (6)
where r(A;,D,X;) is the discriminating fidelity term,
)\]HXHl is the sparsity constraint term, and A, f( X)) is
the discriminating coefficient term. Expanded form of
these three terms can be found in Ref. [18]. This equa-
tion is not convex to (D, X ) at the same time. However,
when D is fixed, it is convex to X and vice versa. The de-
tailed optimization of Eq. (6) is as follows.

Firstly, initialize the dictionary utilizing training da-
ta. Secondly, fix D and update the sparse coding coeffi-
cients X by solving the equation below.

Jix) = axgmin {r(A,,D,Xi) + )\]HXi”I + /\zf,,(X,,)},

1=1,2,...c . (7)

Thirdly, fix X and update D by solving the equation be-

low.
2

¢

Jip, = argmin( A = D X" - z DX\ +
" (D) ety

2 - )
- 3 o]
L Py

Then return to the second step until reaching stop criteri-
on.

1~ nx]

2
F

g =120 . (8)

Step 3:sparse representation

Suppose y € R is a feature vector of the target we
are trying to identified, and D e R**" is the optimized
dictionary acquired from Step 2. Then y can be repre-
sented as a linear combination of atoms in D with coeffi-
cients x.
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y=2ixijflj . (9)

i=1j=1

This equation can be more compact as

y =Dx . (10)

where

x:[xllaxlb."?xnm]TER" . (11)

And ." denotes the transposition operation. Suppose the
target to be identified belongs to class k in reality and
each class contains enough training samples, then y will
be more relevant to the atoms of D, than other sub-dic-
tionaries. Videlicet, the values of coefficients x that are
irrelevant to class k is almost to zero in (8) and x is a
very sparse solution to equation (7). However, with an
overcomplete dictionary, equation (7) has infinite solu-
tions, among which we have to find the sparsest one.
Here we use [,-norm minimization to address this issue.

a?=argmxin{“y—Dx||z+y||x||]} , (12)

where 7y is scalar constant.

The most well-known algorithms of /-norm minimi-
zation are orthogonal matching pursuit (OMP) and least
angle regression (LARS) , which suffer from either too
much computational overhead or deficient estimation ac-
curacy in large scale applications. New algorithms pro-
posed in recent years are gradient projection "', homoto-
py " iterative shrinkage-thresholding ", proximal gra-
dient " and alternating direction *. Among all these al-
gorithms, OMP is the most widely used algorithm, and
homotopy is the fastest algorithm not only appropriate to
large scale applications but also capable to arrive at the
sparsest solutions.

Step 4:classification principle

At last, we use the sparse representation of the tar-
get’ s feature vector to reconstruct with each class of sub-
dictionaries. The target to identified is predicted to be-
long to the class with the least reconstruction error. The
reconstruction of class k is defined as follows: keep the
coefficients corresponding to class k while setting the re-
maining coefficients to zero. Here we introduce a func-
tion x,, X, has the value of x at locations corresponding to
class k and value zero for others. Reconstruction error of
class k is defined as

errork(y)ZHy—D,\/k(ac)H2 . (13)
Then the identity of the target is predicted as

identity (y ) = arg min {errork} . (14)

2 Experiments

2.1 Dataset and experimental setup
In our experiments, aircraft images are acquired

Table 2 Specification of experimental sources

®2 LHHIEIAA

from ground-to-air IR videos in airfields, which consist
of helicopter- , airliner- , transport- , trainer- and two
types of jets. Depending on the different position of these
aircraft (front view and side view) , we divide all the im-
ages into 8 categories: helicopter-type, transport-type,
front view of airliner-type, side view of airliner-type,
front view of trainer-type, side view of trainer-type, jet-
typel and jet-type2, as is shown in Fig. 4. Each category
contains the number of images varies from 300 to 537.
The detailed number is shown in Table 2. From each cat-
egory, we randomly choose 60 images to constitute the
initial dictionary and 200 images from the rest as test im-
ages in each experiment. Besides, we rotate all the test
images into 30 orientations at even 12 degrees.

cl C2 C3 C4 C5 C6 C7 C8

Fig.4 Sample images for the eight classes
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All experiments are performed on the hardware plat-
form of Intel (R) Core (TM) i7-6700HQ CPU@2. 60GHz
with 8GB of DDR RAM, and the software platform is mat-
lab R2016a.

2.2 Feature extraction and Dictionary learning

At the very beginning of dictionary learning proce-
dure, all the training images are resized to 40¥40 pixels.
Main orientations of training samples are computed after-
wards. 0° is chosen to be the reference direction, then
each of the training samples is rotated until its main ori-
entation coincides with the reference direction. After
that, we extract HOG features of these training samples.
Here we set the size of cell to 10*10 pixels and the size of
block to 2*2 cells with an overlapping of 50%. Each cell
contains 9-bin histogram of oriented gradients (0~180°,
20° step size) and each block contains a concatenated
vector of all 2#2 cells. In this case, HOG feature of each
training sample is a 324-dimension vector. From each
class, we randomly choose 60 images to constitute the
initial dictionary, which means the initial dictionary is a
324480 matrix, as is shown in Fig. 5.

According to section 2. 3, optimization of FDDL can
be divided into two alternating procedures: updating co-
efficients X by fixing dictionary D; and updating diction-
ary D by fixing coefficients X. Here we choose the param-

airliner— airliner— trainer— trainer— jet— jet—

aerial type helicopter—  transport—
(front) (side) (front) (side) typel type2
number of images 537 300 300 484 300 300 484 516
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initial dictionary size-324*480

Fig. 5 Initial dictionary matrix
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eters of Eq. (6) A,=0.01 and A,=0. 01. Convergence of
Eq. (7) and Eq. (8) is illustrated in Fig. 6.
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Fig. 6 Convergence of FDDL model
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2.3 Experimental results for classification

To prove the rotation invariance of our algorithm,
we manually rotate all the test images into 30 orientations
varying from 0° to 348° at even angles of 12°. In reality,
only transport-type, jet-typel and jet-type2 may quite
possible appear in different orientations in ground-to-air
IR videos while the other 5 classes are usually captured
in constant positions. However, if we just rotate these 3
classes and keep the other 5 classes non-rotated, quanti-
ty of each class will be quite different, which is unaccept-
able for the results, thus all the test images are rotated in
our experiment.

As is mentioned in section 1, there is another way
to solve the rotation issue—data augmentation for train-
ing samples, so we set it as comparison. Besides, among
all the /,-norm minimization algorithms, OMP is the most
widely used and homotopy is a typical fast convergence
algorithm, so we test both of them. In a word, we com-
pare our method (Algorithm 4) to three other HOG-SRC
based methods—data augmentation + OMP (Algorithm
1), data augmentation + homotopy ( Algorithm 2) , main
orientation rotation + OMP (Algorithm 3). In Alg. 1 and
Alg. 2, the dictionary is a 324X14 400 matrix because
data augmentation is processed for all the training imag-
es. In addition, we also compare KNN and SVM to our
algorithm as KNN and SVM are the very typical small
sample learning algorithms.

In this experiment, we firstly resize all the test imag-
es to 40x40 pixels. Main orientations of test images are

computed afterwards. As is the same with dictionary
learning procedure, we choose 0° to be the reference di-
rection. Then each of the test images is rotated until its
main orientation coincides with the reference direction.
After that, we extract HOG features of these test images,
which are also 324-dimention vectors. For each HOG fea-
ture, its corresponding sparse representation coefficients
is computed according to Eq. (12). At last, identity of
this target would be predicted according to Eq. (14). In
sparse coefficients computing process, we set y to 107
and tolerance to 0. 005. The stop criterion is either resid-
ual error is smaller than tolerance or the number of itera-
tions reaches 1000. Besides, for KNN method, K is set
to 3. For SVM method, linear function is chosen to be
the kernel function. All the experiments are repeated 10
times and for each experiment, training and testing sam-
ples are selected randomly and independently. Identifica-
tion rate is defined as Eq. (15). Sample test images and
their sparse representation coefficients are shown in
Fig. 7. The average results are shown in Table 3.
identification rate =

( IZO, number of right identified targets 1710

(15)
i1 number of targets to be identified

C1: helicopter [ o

¥

RN

C2: transport

C3: airliner(front))

C4: airliner(side)

C5: trainer(front) e T

C6: trainer(side)

C7: jet-typel

C7: jet-type2

targets sparse coefficients

Fig. 7 Sample test images and their sparse representation coeffi-
cients.
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Figure 7 illustrates that sparse coefficients for differ-
ent classes mainly concentrate on their respective re-
gions. This phenomenon verifies the inherent quality of
the sparsest representation—among all subsets of basic
atoms, the sparsest solution selects the subset which
most compactly expresses the input signal and rejects all
other possible but less compact representations. Table 3
shows that methods based on SRC exhibit the best over-
all. In comparison of Alg. 2 and Alg. 4 (or Alg. 1 and
Alg. 3), the size of dictionary has little impact on identi-
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fication accuracy. Comparing OMP and homotopy conver-
gence, we see that homotopy performs much better. Be-
sides, identification frames per second of Alg. 4 is up to
82. 6FPS, this is enough for aerial identification task.
As to KNN and SVM, it can be seen that KNN also per-
forms well that it predicts all types beyond 90% and even
has the highest identification accuracy for trainer (side) -
type. On the contrary, SVM performs the worst, this
might be improved by using other kernel functions. Nev-
ertheless, SVM is essentially a binary classifier so it
solves multi-classification task not that efficiently.
2.4 Experimental results for anti—noise capability

On the basis of fundamental physics, every object at
any given absolute temperature above 0K emits thermal
radiation including atmosphere™ , thus one of the most
particular characters of IR images is low SNR. To vali-
date how the proposed method performs under noise influ-
ence, we randomly choose a number of pixels in each
test image to be corrupted. The percentage is from 10
percent to 90 percent and the corruption is done by add-
ing the original intensity with independent and identical-
ly distributed samples from a Gaussian distribution. Fig.
8 shows several sample test images and the experimental
results are shown in Fig. 9.

We see that our algorithm recovers the identity of all
targets beyond 80% accuracy even when the test images
are corrupted at 50%. This performance is due to the in-

10% corrupted

50 100 150 200 250 300 350 400 450 500

30% corruptcd

50 100 150 200 250 300 350 400 450 500

9

50 100 150 200 250 300 350 400 450 500

50% corruptcd

Fig. 8 Sample test images for anti-noise capability. Left row:
sample test images with percent corrupted. Right row: sparse
representation coefficients of the test images

P8 % IR 15 28 e P I B I 2 R, 78 - B gk
P IR . A5 90« 2 VGO L F) i i e 7 2R 4L

herent property of sparse representation—when the test
image y is partially corrupted, function (7) should be
modified as

(16)

According to Wright, SRC is proved to remain 100% rec-
ognition rate even when the image is corrupted by 60%.
In our experiment, main orientation HOG with SRC is
unable to reach that high accuracy. This is owing to the
feature extraction process in our method. When diction-
ary is constructed by pixels, identification may still be
available on the basis of remaining pixels even if some
pixels are corrupted. In contrast, HOG descriptor is
based on gradient image, which is more sensitive to nois-
es. As we can see in Fig. 9, although our method does
not show that strong anti-noise capability in comparison
with SRC in Ref[ 10], comparing to KNN or SVM meth-
ods, it still recovers the identity of all targets beyond
80% accuracy when the test images are corrupted at
50%.

Comparing OMP and homotopy convergence, it can
be seen that homotopy is much more robust to noise. In
comparison of Alg. 2 and Alg. 4 (or Alg. 1 and Alg. 3),

it can be seen that the increasement of dictionary size

y =y, + error = Dx + error

spoils the identity, this is because in convergence pro-
cess, proper stopping criterion should be set. When dic-
tionary size is small, [,-minimization problem may easily
fall to converge to the global optimum. On the contrary,
when dictionary size enlarges too much, convergence pro-
cess may stop before converging to the optimum, and this
will become worse when noises added in.

3 Conclusion

In this paper, we presented a fast rotation-invariant
identification algorithm based on HOG descriptor and
SRC classifier. The key idea to rotation invariance is that
in IR images, aeroengine shows the strongest thermal ra-
diation, so the main orientation of a target can be comput-
ed from gradient information. Experiment results demon-
strate that our method appears not only high identifica-
tion accuracy but also robustness to noise. In future, we

Table 3 Identification rates of various methods on the 8 classes of aerial targets.

®3 TEEETHALEHRE

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6

C1: helicopter 0. 956 0. 984 0.953 0. 986 0. 955 0. 833

C2: transport 0.915 0. 981 0.903 0.973 0.936 0.971

C3: airliner(front) 0.974 0.982 0.974 0. 986 0. 968 0. 867

identification aceuracy C4: airliner(side) 0.972 0.991 0. 965 0.991 0.907 0. 846
C5: trainer(front) 0. 891 0. 990 0. 898 0. 985 0. 948 0.961

C6: trainer(side) 0.908 0.978 0.919 0.981 0.983 0.971

C7: jet-typel 0.956 0. 968 0.927 0. 988 0.954 0. 881

C8: jet—type2 0.795 0.976 0.832 0.978 0.961 0.763

average identification accuracy 0.921 0.981 0.921 0.983 0.951 0. 887

Alg. 1—data augmentation+tHOG-SRC+OMP; Alg. 2—data augmentation+HOG—SRC+homotopy; Alg. 3—main orientation HOG-SRC+OMP; Alg. 4—
main orientation HOG—-SRC+homotopy; Alg.5—main orientation HOG—KNN; Alg.6—main orientation HOG-SVM.
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plan to further expand our dataset from two aspects: on
one hand, more types of aerial targets are expected to be
added. On the other hand, quantity of each type is to be
enlarged, especially for those in cloudy sky, as thus vali-
dation of targets in complex background can be complet-

ed.
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