文章编号:1001-9014(2021)06-0732-06

肖特基二极管毫米波等效电路模型参数提取方法

黄惠琳, 黄 静, 施 佺^{*} (南通大学信息科学技术学院,江苏南通 226019)

摘要:提出了一种肖特基二极管的毫米波等效电路模型参数提取方法。该方法利用开路测试结构确定焊盘电容, 并结合短路测试结构确定馈线电感;基于直流*I-V*特性曲线和小信号S参数分别提取了寄生电阻并进行了对比分 析;给出了本征元件随偏置电压的变化曲线。在频率高达40GHz的范围内,截止和导通状态下S参数的模拟与测 试数据吻合良好,验证了提取方法的有效性。

关 键 词:肖特基二极管;等效电路模型;参数提取 中图分类号:TN315.3 文献标识码: A

A parameter extraction method of the Schottky diode millimeter wave equivalent circuit model

HUANG Hui-Lin, HUANG Jing, SHI Quan*

(School of Information Science and Technology, Nantong University, Nantong 226019, China)

Abstract: A millimeter wave equivalent circuit model parameters extraction method for Schottky diodes is proposed in this paper. The pad capacitance has been determined by using open circuit test structure, and the feedline inductance has been determined by using short-circuit test structure. The parasitic resistance has been extracted by using DC method and AC method respectively. An excellent fit between measured and simulated S-parameters in the frequency range of 1~ 40 GHz is obtained for GaAs Schottky diode.

Key words: Schottky diode, equivalent circuits, parameter extraction PACS:85. 30. De

引言

基于 GaAs 的肖特基二极管已被证明是可以应 用于太赫兹成像、传感等系统的混频与倍频模块的 重要元器件^[1-2]。然而,由于缺乏精确的毫米波等效 电路模型和有效的参数提取方法,所设计的毫米波 电路往往无法获得预期的性能指标。因此,本文开 展了肖特基二极管的毫米波等效电路模型参数提 取方法的研究。

通常情况下,肖特基二极管等效电路模型参数 提取方法分为两大类^[3-5]。第一类是基于优化技术 的参数提取方法,该方法的特点是模型精度依赖于 模型参数初始值设置并且需要较长的优化时间^[6]; 第二类方法是结合了直接提取技术和优化技术的 半分析法,这类方法需要特殊的测试结构和相应的 模型参数表达式推导^[7-9]。

与传统优化提取方法相比,本文提出了一种改进的肖特基二极管毫米波等效电路模型参数提取方法,该方法采用直接提取技术,利用开路测试结构确定焊盘电容,并结合短路测试结构确定馈线电感,利用直流*I-V*特性曲线和小信号S参数直接提取出寄生电阻,避免了引入额外的测试结构和优化技术。在频率高达40 GHz的范围内,截止和导通状态下S参数的模拟与测试数据吻合良好,验证了提取

Received date: 2021-05-06, Revised date: 2021-11-22

收稿日期:2021-05-06,修回日期:2021-11-22

基金项目:江苏省"333 工程"人才项目(BRA2017475),应急管理部消防救援局科研计划项目(2019XFCX33)

Foundation items: Supported by Talent Project of "333 Project" in Jiangsu Province(BRA2017475)Scientific Research Project under Fire and Rescue Department Ministry of Emergency Management (2019XFCX33)

作者简介(Biography):黄惠琳(1997-),女,河南信阳人,硕士研究生,主要研究领域为太赫兹集成电路器件与电路。E-mail: 2439458857@qq. com *通讯作者(Corresponding author): E-mail: sq@ntu. edu. cn

方法的有效性。

1 模型参数提取

1.1 肖特基二极管等效电路模型

图1给出了本文制作的肖特基二极管剖面结构 图和相应的等效电路模型,从图1(a)可以看出,该 肖特基二极管由砷化镓衬底、N型重掺杂缓冲层、N 型轻掺杂外延层、肖特基结、阳极焊盘、阴极焊盘以 及空气桥等部分组成。

图 1(b)中,A 表示阳极,C 表示阴极, C_p 为焊盘 (PAD)电容, L_r 为馈线电感, R_s 为寄生电阻, C_j 为本 征结电容, V_p 为二极管外加偏置电压, I_p 为静态电 流, R_i 为本征结电阻。

图1 (a)肖特基二极管物理结构,(b)等效电路模型

Fig. 1 (a) Cross-section of Schottky diode, (b) equivalent-circuit model

1.2 PAD电容和馈线电感提取方法

肖特基二极管必须通过共面波导(CPW)和测 试探针连接,为了与GSG结构的测试探针匹配,设 计了如图2所示的开路和短路测试结构。测试结构 相应的等效电路模型如图3所示。图3(a)中,PAD 电容*C*_p可以由开路测试结构的Y参数直接确定:

$$C_{\rm p} = \frac{{\rm Im}(Y_{11}^{\rm open})}{2\pi f}$$
 . (1)

图 3(b)中,馈线电感L_i则需要通过短路测试结构的 Y 参数和开路测试结构的 Y 参数共同确定,具体计算式为:

$$L_{\rm f} = \frac{{\rm Im}(\frac{1}{Y_{11}^{\rm short} - Y_{11}^{\rm open}})}{2\pi f} \qquad , \quad (2)$$

式(1-2)中, Y_{11}^{open} 表示开路测试结构的Y参数, Y_{11}^{short} 表示表示短路测试结构的Y参数,f表示频率。

图 2 开路和短路测试结构版图 (a)开路,(b)短路 Fig. 2 Layouts of test structure (a) open, (b) short

图 3 开路和短路测试结构的等效电路模型 (a)开路,(b)短路

Fig. 3 Equivalent circuit models of test structure (a) open, (b) short

1.3 直流模型参数提取方法

图4给出了肖特基二极管的直流和交流测试结 构版图。

图 1(b)中,静态电流 $I_{\rm D}$ 与偏置电压 $V_{\rm D}$ 的函数关系式为^[10]:

$$I_{\rm D} = I_{\rm s} \left[\exp\left(\frac{V_{\rm D} - I_{\rm D}R_{\rm s}}{nV_{\rm T}}\right) - 1 \right] \qquad , \quad (3)$$

其中, I_s 为反向饱和电流,n为理想因子, V_T 为热 电势。

在直流 *I*-*V*特性曲线的线性区域,寄生电阻 *R*。 上的压降可以忽略,因此,式(3)可简化为:

$$I_{\rm D} \approx I_{\rm s} \exp(\frac{V_{\rm D}}{nV_{\rm T}})$$
 , (4)

式(4)两边同取自然对数,可以得到:

$$\ln(I_{\rm D}) = \frac{V_{\rm D}}{nV_{\rm T}} + \ln(I_{\rm s}) = aV_{\rm D} + b \qquad , \quad (5)$$

这样,根据 $\ln(I_{D})$ 随 V_{D} 变化曲线的斜率a和截距b,可以直接确定理想因子n与反向饱和电流 I_{s} :

图 4 直流和交流测试结构版图 Fig. 4 Layouts of test structure

$$n = \frac{1}{aV_{\rm T}} \qquad , \quad (6)$$

 $I_{\rm s} = {\rm e}^b$. (7)

在大电流情况下,寄生电阻 R_s的存在使得二极 管的 *I*-*V*特性曲线发生弯曲,此时寄生电阻上的压 降 Δ*V*可以表示为:

$$\Delta V = I_{\rm D} R_{\rm s} = V_{\rm D} - \frac{\ln(I_{\rm D}) - b}{a}$$
 , (8)

根据式(8)可直接确定寄生电阻 R_s的阻值,这种方法本文称之为直流法。

1.4 交流模型参数提取方法

图5给出了导通状态下的肖特基二极管等效电路模型。此时*R*_s与*R*_i电阻之和*R*_i可以表示为:

$$R_{i} = R_{s} + R_{j} = \operatorname{Re}(\frac{1}{Y_{11}^{on} - Y_{11}^{open}})$$
 , (9)

其中, Y^{an} 为导通状态下肖特基二极管的 Y 参数。本征结电阻 R_i的计算公式为:

$$R_{\rm j} = \frac{nV_{\rm T}}{I_{\rm D}} \qquad . \quad (10)$$

根据式(9-10)也可以确定*R*_s的阻值,这种方法 本文称之为交流法。

图6给出了截止状态下的二极管等效电路模

Fig. 5 Equivalent circuit model under Schottky diode forward bias condition 型,从图中可以看出,低频下起主要作用的是PAD 电容C。和结电容C。。结电容可由下式直接确定:

$$C_{\rm j} = \frac{{\rm Im}(Y_{\rm 11}^{\rm off})}{2\pi f} - C_{\rm p} \qquad , \quad (11)$$

其中,Y^{off}表示截止状态下肖特基二极管的Y参数。

图6 截止状态下的肖特基二极管等效电路模型

Fig. 6 Equivalent circuit model under Schottky diode reversed bias condition

2 结果与讨论

采用分子束外延技术在半绝缘GaAs衬底上制 作了GaAs肖特基二极管,肖特基结半径为1 µm。

利用E8363C 矢量网络分析仪在1~40 GHz 频率 范围内对 GaAs 肖特基二极管的 S参数进行测量,直 流偏置由 Agilent B1500A 半导体参数分析仪提供。 测量时使用 Cascade 的共面探针 ACP50-GSG-100 进行在片测试。

图7给出了PAD电容 C_n 和馈线电感 L_f 随频率

图 7 $1 \sim 40$ GHz 频率范围内寄生元件随频率变化曲线 (a) 焊盘电容 C_{v} , (b) 馈线电感 L_{f}

Fig. 7 Parasitic elements versus frequency in 1~40 GHz frequency range (a) pad capacitance C_{p} , (b) feedline inductance L_{f}

图 8 静态电流自然对数 $\ln(I_{\rm D})$ 随偏置电压 $V_{\rm D}$ 的变化曲线 Fig. 8 $\ln(I_{\rm D})$ versus $V_{\rm D}$

的变化曲线,可以发现PAD电容 C_p 和馈线电感 L_r 提 取值随频率波动较小,其与平均值的偏差小于5%。 通过直接提取法确定其数值分别为14.73 fF和 27.46 pH。图8给出了静态电流的自然对数 $\ln(I_p)$ 随着偏置电压 V_p 的变化曲线,其线性区域的斜率a为33.61,截距b为-31.87,通过式(6)和式(7)计算 可以得到n与 I_p 的值。

图9给出了大电流情况下总电阻 R_i 随静态电流 倒数 $1/I_p$ 的变化曲线,可以发现当静态电流倒数 $1/I_p$ 趋近于0时,纵轴的截距即为寄生电阻 R_s 。图 10(a-b)分别给出了本征结电容 C_j 和结电阻 R_j 随偏置电 压 V_p 的变化曲线,可以看到 C_j 随着 V_p 的增加而增 大,与此相对的是 R_j 随着 V_p 的增大而减小。根据 C_j 随 V_p 变化曲线,通过式(12)可以得到内建电势 V_{bi} 和电容梯度因子m:

图 9 总电阻 R_1 随静态电流倒数 $1/I_p$ 的变化曲线 Fig. 9 Total resistance R_1 versus the bias voltage V_p

表1给出了肖特基二极管模型参数提取值,从 表中可以看到,交流法提取出的寄生电阻阻值与直 流法提取出的寄生电阻阻值接近,证明了提取方法 的正确性。

图 11 给出了静态电流 I_D 随偏置电压 V_D 的变化

图 10 本征元件随偏置电压 $V_{\rm D}$ 的变化曲线 (a)结电容 $C_{\rm j}$, (b)结电阻 $R_{\rm j}$

Fig. 10 Intrinsic elements versus the bias voltage $V_{\rm D}$ (a) junction capacitance $C_{\rm ip}$ (b) junction resistance $R_{\rm i}$

表1 肖特基二极管模型参数提取值

Table 1 Extracted the model parameters of Schottky diode

参数	数值	参数	数值
$I_{\rm s}/{ m A}$	1.44×10^{-14}	$V_{\rm bi}/{ m V}$	0.68
n	1.15	m	0.503
$R_{\rm s}$ (直流法)/ Ω	6.48	$C_{\rm p}/{\rm fF}$	14.73
$R_{s}(交流法)/\Omega$	7.09	$L_{\rm f}/{\rm pH}$	27.46
C_{j0}/fF	24.21		

图 11 静态电流 *I*_D随偏置电压 *V*_D变化的模拟结果和测试结 果比较曲线

Fig. 11 Comparison of modeled and measured $I_{\rm D}$ versus $V_{\rm D}$

图 12 给出了 1~40 GHz 频率范围内二极管 S₁₁模 拟结果和测试结果对比曲线,可以发现在截止状态 下和导通状态下模拟结果与测试结果均吻合很好。 图 13 给出了 *S*₁₁的相对误差 error 随频率的变化曲 线,其定义为:

图 12 肖特基二极管模拟结果和测试结果对比曲线 (a)截止状态下 S_{μ} 的实部,(b)截止状态下 S_{μ} 的虚部,(c)导通状态下 S_{μ} 的实部,(d)导通状态下 S_{μ} 的虚部

Fig. 12 Comparison of modeled and measured data of Schottky diode (a) real part of S_{11} under reversed bias condition, (b) imaginary part of S_{11} under reversed bias condition, (c) real part of S_{11} under forward bias condition, (d) imaginary part of S_{11} under forward bias condition 由图 13 可见,在截止状态下相对误差低于 2%,导通状态下的相对误差低于 6%。

图13 S1相对误差随频率变化曲线

Fig. 13 Relative error of S_{11} versus frequency

通常,肖特基二极管寄生电阻*R*_s和零偏结电容 *C*_{i0}的乘积可以用来表征其工作截止频率*f*_c:

$$f_{\rm c} = \frac{1}{2\pi R_{\rm s} C_{\rm j0}}$$
 . (14)

本文制作的肖特基二极管寄生电阻为7.09Ω, 零偏结电容为24.21 fF,由式(14)计算得到截止频 率为0.93 THz,说明该器件可以应用于太赫兹频段 的电路设计。

3 结论

本文主要研究了肖特基二极管的毫米波等效 电路模型参数提取方法,对比分析了直流法和交流 法提取的寄生电阻,给出了寄生元件随频率的变化 曲线和本征元件随偏置电压的变化曲线。在1~40 GHz 频率范围内,S参数的模拟与测试结果吻合,验 证了提取方法的有效性。

References

- [1] YANG Yi-Lin, ZHANG Bo, JI Dong-Feng, et al. A wideband terahertz planar Schottky diode fourth-harmonic mixer with low LO power requirement [J]. Journal of Infrared and Millimeter Waves, (杨益林,张波,纪东峰,等.基于 肖特基二极管的宽带低本振功率太赫兹四次谐波混频 器.红外与毫米波学报), 2020, 39(5): 540-546.
- [2] TIAN Yao-Ling, HUANG Kun, CEN Ji-Na, et al. High power single and power-combined 100~115GHz Schottky balanced doublers [J]. Journal of Infrared and Millimeter Waves,(田遥岭,黄昆,岑冀娜,等.大功率单路和功率 合成式100~115 GHz肖特基平衡式二倍频器.红外与毫 米波学报),2021,40(1):13-18.
- [3] Haris N, Kyabaggu P B K, Rezazadeh A A. Design and characterisations of double-channel GaAs pHEMT Schottky diodes based on vertically stacked MMICs for a receiver protection limiter [J]. Semiconductor Science and Technology, 2016, 31(7):5007-5015.
- [4] ZHANG Ao, ZHANG Yi-Xin, WANG Bo-Ran, et al. An

approach to determine small-signal model parameters for InP HBT up to 110 GHz [J]. *Journal of Infrared and Millimeter Waves*,(张傲,张译心,王博冉,等.110 GHz 铟磷 异质结双极晶体管小信号模型参数提取方法.**红外与毫** 米波学报),2018,37(6):688-692.

- [5] Chen Q, Chen X, Cai H T, et al. Schottky diode large-signal equivalent-circuit parameters extraction for high-efficiency microwave rectifying circuit design [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67 (11): 2722-2726.
- [6] Tang A Y, Drakinskiy V, Yhland K, et al. Analytical extraction of a Schottky diode model from broadband S-parameters [J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(5): 1870-1878.
- [7] Tang A Y, Stake J. Impact of eddy currents and crowding effects on high-frequency losses in planar Schottky diodes
 [J]. *IEEE Transactions on Electron Devices*, 2011, 58

(10): 3260 - 3269.

- [8] ZHAO Xiang-Yang, WANG Jun-Long, XING Dong, et al. Parameters model of terahertz planar Schottky diode [J]. Infrared and Laser Engineering, (赵向阳, 王俊龙, 邢东, 等。太赫兹平面肖特基二极管参数模型。 红外与激光 工程), 2016, 45(12): 158-163.
- [9] Luo H R, Li A L, Hu W R, et al. A Novel Extraction Method for Series Inductance in Schottky Diodes Based on Resonance [C]. IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, 2020; 1–3.
- [10] GAO Jian-Jun. Heterojunction bipolar transistor: Radio frequency microwave modeling and parameter extraction method [M]. Beijing: Higher Education Press (高建军。 异质结双极晶体管:射频微波建模和参数提取方法)。北京:高等教育出版社), 2013: 10-68.