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Abstract： In this paper， the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor 
（InP HEMT） based on the Transformer neural network model is investigated.  The AC S-parameters of the HEMT 

device are trained and validated using the Transformer model.  In the proposed model， the eight layers transformer 
encoders are connected in series and the encoder layer of each Transformer consists of the multi-head attention lay⁃
er and the feed-forward neural network layer.  The experimental results show that the measured and modeled S-pa⁃
rameters of the HEMT device match well in the frequency range of 0. 5-40 GHz， with the errors versus frequency 
less than 1%.  Compared with other models， good accuracy can be achieved to verify the effectiveness of the pro⁃
posed model.
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基于Transformer模型的磷化铟高电子迁移率晶体管毫米波建模
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摘要：本文对基于Transformer神经网络模型的磷化铟高电子迁移率晶体管（InP HEMT）小信号建模进行了研

究，利用 Transformer模型对 HEMT器件的交流 S参数进行训练和验证。在所提出的模型中，八层 Transformer
编码器串联，每个 Transformer 的编码器层由多头注意层和前馈神经网络层组成。实验结果表明，在 0.5-40 
GHz频率范围内，HEMT器件测量和建模的S参数匹配良好，频率误差小于1%。与其他模型相比，可以达到良

好的精度，验证了所提模型的有效性。
关 键 词：Transformer模型；神经网络；高电子迁移率晶体管（HEMT）；小信号模型
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Introduction
In recent years， with the rapid development of high-

speed communication and RF microwave technologies， 
high electron mobility transistor （HEMT） devices are in⁃
creasingly used in microwave and millimeter-wave cir⁃

cuits［1-5］.  Among them， indium phosphide （InP） HEMT devices have become an ideal choice for next-generation high-speed and high-frequency electronic devices due to their excellent electron mobility and frequency response characteristics［6-7］.  In order to fully utilize the perfor⁃mance of InP HEMT devices， accurate device modeling 
Received date： 2024⁃10⁃09，  收稿日期：2024⁃10⁃09，
Foundation items：Supported in part by the National Natural Science Foundation of China under Grant 62201293 and Grant 62034003， and in part by the 
Open-Foundation of State Key Laboratory of Millimeter-Waves under Grant K202313.
Biography：ZHANG Yaxue （1999）， female， Qingdao， master.  Research area involves microwave device modeling.  E-mail：zhangyaxue1207@163. com.
 * Corresponding author：E-mail： aozhang@ntu. edu. cn



红 外 与 毫 米 波 学 报 XX 卷

is particularly important.  However， traditional small-sig⁃nal models have limitations in simulating InP HEMT de⁃vices， making it difficult to accurately describe their non⁃linear characteristics and frequency dependence［8-9］.With the rapid development of machine learning technology， neural networks have been widely used in many fields， such as microwave device modeling， signal processing and RF design［10-11］.  In the field of microwave device modeling， neural networks can replace the manu⁃al completion of a large number of cumbersome steps， greatly improving the efficiency of scientific re⁃search［12-13］.The related techniques have been discussed as fol⁃lows.  The Wiener-type dynamic neural network （DNN） approach for HEMT device modeling was presented in 
［14］.  The analytical formulation of Winer-type DNN structure consists of a cascade of a simplified linear dy⁃namic part.  In ［15］， the approach using decomposed mapping for HEMTs， advancing the Space Mapping tech⁃nique of neural network for device modeling was dis⁃cussed.  The convolutional neural network （CNN） for HEMT device modeling with various gate and source field plate designs and drain voltages was mentioned in 
［16］.  Moreover， literature ［17］ presented a modified re⁃current neural network （RNN） technique， long-short term memory （LSTM） algorithm-based， small-signal be⁃havioral modeling methodology for HEMTs.  Meanwhile， small-signal model based on gated recurrent unit （GRU） neural networks was investigated in ［18］.Based on these researches， the small-signal model based on Transformer neural network with multiple trans⁃formers for InP HEMT is presented in this paper.  In com⁃parison to the previous literature， several novel aspects are shown as follows.1） The AC S-parameters have been trained and vali⁃dated by using the transformer neural network with 8-lay⁃ers transformer encoders in series.2） The encoder layer of each Transformer consists of two sub-layers： the Multi-head attention layer and the feed forward neural network layer.  Residual connection and layer normalization are added after each sub-layer.3） Higher accuracy compared to other models.  The simulated S-parameters perform well on the fitting of the measured S-parameters under normal bias conditions.  The errors versus frequency is less than 1%.The organization of the paper is as follows.  Section II gives the details of the proposed neural network with multiple transformers which utilized in the small signal modeling of InP HEMTs.  Section III presents the discus⁃sion and the analysis of the results.  In the end， a conclu⁃sion is provided in Section IV.
1 Transformer neural network model 

The structure of the proposed neural network model is given in Fig. 1， which uses and improves the encoder part of the conventional transformer model.  As seen in Fig. 1， the proposed model can be divided into three parts： the input layer， the hidden layers and the output layer.  The input layer is an n×3 second-order matrix， 

where n represents the number of samples and 3 repre⁃sents the sample features， which are frequency freq， gate-source voltage Vgs and drain-source voltage Vds.  The hidden layers consist of the transformer encoder layers and the linear layers.

To begin with， the data are preprocessed through the first linear layer and the input data are transformed in⁃to a third-order matrix of n×8×128， where 8 denotes the number of samples that are input to the model at one time for training or inference， generally referred to as the batch size.  This is immediately followed by eight identi⁃cal Transformer encoder layers in series， which dimen⁃sionally have identical inputs and outputs， all of which are identical to the output of the first linear layer.  Final⁃ly， through the second linear layer， the data are trans⁃formed into an n×8 second-order matrix to be passed to the output layer， at this time， 8 represents the sample characteristics of the output data， which are the magni⁃tude（Mag） and phase（ϕ） of S11， S21， S12 ， S22 ， respec⁃
tively.The expression for the output matrix S of the model is：

S = fTransformer ( I ) ， (1)
where S is an n×8 order matrix denoted：

Fig. 1　Model structure
图1　模型结构
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I　is an n×3 order matrix, denoted　
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The 8-layers transformer encoder in the model is connected in series.  By extracting and processing input features layer by layer， the model can capture more com⁃plex and abstract feature representations.  Increasing the number of layers can improve the expressiveness of the model， capture long-distance dependencies， gradually fuse information， and improve generalization capabili⁃ties.  Each transformer encoder layer contains two sub-layers， as shown in Fig. 2， namely the Multi-head Atten⁃tion layer and the Feed Forward Neural Network layer.  Residual Connection and Layer Normalization are added after each sub-layer.The self-attention mechanism is the core of Trans⁃former， which allows each input vector to pay attention to the input vectors at all other positions in the sequence when calculating its own representation.  This can help the model capture the global dependencies between input features.  The self-attention mechanism is to compute the attention weight Attention（Q， K， V） by calculating the query matrix， key matrix and value matrix of the input matrix X.  The formula is as follows：
Q = XWQ

K = XWK

V = XWV

 ， (4)
where WQ ，WK ，WV is the weight matrix.  We have，

Attention (Q,K,V ) = softmax ( QK T

dk
)V (5)

where dk is the scaling factor.In multi-head attention， the input is computed in parallel by h independent heads， each with its own query， key， and value matrices.  The output of each head is as follows：head i = Attention ( QW i
Q,KW i

K ,VW i
V ) (6)

The outputs of all heads are concatenated and subse⁃

quently passed through a linear transformation：MultiHead(Q,K,V ) =
Concat (head1 , ... ,headh )WO

(7)
where WO is the out⁃put weight matrix.Then， through the feed-forward neu⁃ral network， the pro⁃posed model can cap⁃ture the long-range dependencies in the input sequences， fur⁃ther extract and fuse the feature informa⁃tion at different posi⁃tions， and enhance the nonlinear and ex⁃pressive capabilities of the model.  The formula is as follows：FFN( x ) =

max (0,xW1 +
b1 )W2 + b2 (8)

where x is the input variable.  W1， W2 are the weight matrices of the linear transfor⁃mation， and b1 ， b2 are the bias vectors.In the proposed model， residual connections and layer normalization are two key components.The residual connections can alleviate the gradient vanishing problem in neural networks and promote the flow of information.  By giving residual connections， the input can bypass one or more layers and be directly add⁃ed to the output， making the network easier to train.  The formula for residual connections is：
y = F ( x ) + x (9)

where the input is x and the output after some sublayer 
（e. g. ， a multi-head self-attention layer or a feedforward neural network） is F（x）.Layer normalization can normalize the features of each sample to speed up the training process and improve the stability of the model.  Layer normalization is per⁃formed independently on each sample.  Assuming the in⁃put is h， the layer normalization operation is as follows：Calculate the mean and variance：

μ = 1
d ∑

i = 1

d

hi

σ2 = 1
d ∑

i = 1

d (hi - μ ) 2
(10)

Standardization：
ĥi = hi - μ

σ2 + ε
(11)

Fig. 2　Structure of the Transformer 
encoder layer
图2　Transformer编码器层结构
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Linear transformations：
yi = γĥi + β (12)

where γ and β are trainable parameters and ε is a small constant to prevent division by zero.The dataset contains 7700 data points.  K-Fold cross validation is used as the model evaluation method to pro⁃vide a more robust assessment of the model.  The dataset is divided into 5 subsets， each with 1540 data points.  One of the subsets is used as the validation set， and the other subsets are used for training.  Finally， the average performance of the model is calculated through multiple rounds of validation.In order to evaluate the training effect of the model， the Mean Squared Error （MSE） loss is chosen as the loss function of the model.  We have：
MSE = 1

n ∑
i = 1

n

( ŷ i - yi ) 2 (13)
Where ŷ i is the predicted value of the model and yi is the 
true value of the model and n is the number of samples.The model is trained using the Adam optimizer with a learning rate of 0. 001.  A batch size of 8 is used， and the training is run for 100 epochs.  Dropout is set to 0. 1 in each layer to prevent overfitting.  The training is con⁃ducted on an AMD Radeon （TM） Graphics GPU with 16 GB of memory.  The total training time for the 8-layer model is approximately 2. 1 hours.
2 Results and discussions 

In order to verify the proposed ANN model de⁃scribed in Section 2， the InP-based HEMT devices fabri⁃cated using in-house process were characterized.  The de⁃vice with gate width of 2×25μm were investigated in the frequency range of 0. 5-40 GHz.  The test layout of InP HEMT devices is shown in Fig. 3.  The verification was made up to 40 GHz by using Agilent E8363C vector net⁃work analyzer， with DC bias supplied by Agilent B1500.  All measurements were carried out on wafer using Cas⁃cade Microtech’s Air-Coplanar Probes ACP50-GSG-100.  The measurement setup is illustrated in Fig. 4.The comparison between modeled and measured S-pa⁃rameters for InP HEMT devic⁃es in the frequency range of 0. 5-40 GHz for the bias points at Vgs=0 V， Vds=1. 0 V ， Vgs=0 V， Vds=1. 2 V and Vgs=-0. 05 V， Vds=1. 2 V are plotted in Fig. 5.The formula of the abso⁃lute error is
Error = | Smeas

ij - Smodel
ij | × 100%

(14)
where Smodel

ij  represents the modeled S-parameters， and 
Smeas

ij  denotes the measured S-parameters.  Note that all the S parameters vary with frequency.Under the condition of bias gate-source voltage Vgs=0 V and drain-source voltage Vds=1. 0 V， the absolute er⁃

ror curves of the amplitudes of S11 ， S12 ， S21 ， and S22 in the frequency range of 0. 5-40 GHz with respect to fre⁃quency are shown in Fig. 6.  It can be seen that the errors versus frequency is within 1%， which proves the accura⁃cy of the model.

 

 

0.0

0.2

0.4

0.6

0.8

0 10 20 30 40

Frequency (GHz)

E
r
r
o

r
 o

f 
  
S

1
1
 (

%
)

（a）　S11

 

 

0.0

0.3

0.6

0.9

1.2

0 10 20 30 40

Frequency (GHz)

E
r
r
o

r
 o

f 
  
S

2
1
 (

%
)

（b）　S21

 
Fig. 3　Test layout of InP 
HEMT devices.
图 3　 InP HEMT 器件的
测试版图

Fig. 4　Measurement setup
图 4　测试设备
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Fig.6　The absolute error of S-parameters versus frequency
图6　S参数绝对误差Fig. 7 illustrates the training and validation loss 
curves.  The model converged after approximately 80 ep⁃
ochs， with no significant overfitting observed.

For a global evaluation of model accuracy， the 
Mean Squared Error （MSE） is also calculated and provid⁃
ed in Table 1.  In order to further demonstrate the accura⁃
cy of the Transformer model， the proposed model based 
on the transformer is compared with other models， in⁃
cluding Convolutional Neural Network （CNN）， Long 
Short-Term Memory Network （LSTM）， and Gate Recur⁃
rent Unit （GRU）.  As can be seen from Table 1， the 
MSE of proposed model is better than the other models.

Among them， the input layer of the Transformer 
model is projected to obtain a 128 dimensional embed⁃
ding， using 16 attention heads， and each feedforward 
network has 128 neurons.  The convolutional layers of the 
CNN model use 64， 128， and 256 filters respectively.

3 Conclusions 
The small-signal modeling of the InP HEMT based on the Transformer model is presented in this paper.  For the proposed model， the eight layers transformer model connected in series with multi-head attention layer and the feed-forward neural network layer are utilized to train and validate the S-parameters of the HEMT.  Good agree⁃ment can be achieved between the simulated and mod⁃eled data in the frequency range of 0. 5-40 GHz.  Com⁃pared with other models， higher accuracy can be ob⁃tained， with the errors versus frequency within 1%.

Table 1　Comparison of MSE accuracy
表1　MSE精度比较

Method
Transformer

CNN［16］

LSTM［17］

GRU［18］

MSE
0. 0012
0. 0037
0. 0015
0. 0017

Number of Neurons
128-16-128

64，128，256 per layer
128 per layer
128 per layer

Number of Layers
8 layers

4 convolutional layers
3 layers
3 layers

Training Methods and Parameters
K-Fold cross validation， k=5
K-Fold cross validation， k=5
K-Fold cross validation， k=5
K-Fold cross validation， k=5
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（a）　

（b）　

（c）　

Fig.5　Comparison of modeled and measured S-parameters for InP HEMT in 0.5-40 GHz frequency range. Bias: (a) Vgs=0 V, Vds=1.0 V 
(b) Vgs=0 V, Vds=1.2 V (c) Vgs=-0.05 V, Vds=1.2 V
图 5　0.5-40 GHz 频率范围内 InP HEMT的模拟和测试 S参数比较。偏置：(a) Vgs=0 V, Vds=1.0 V (b) Vgs=0 V, Vds=1.2 V (c) Vgs=
-0.05 V, Vds=1.2 V
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