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Research progress of active metasurface for intelligent radar stealth

WANG Dong-Shu, LIU Tong—Hao*, WANG Liu—Ying* ,  LIU Gu, CHEN Hai-Qing,
CHEN Meng-Zhong, GE Chao-Qun, WANG Long, WANG Bin, XU Ke-Jun
(Zhijian Laboratory, Rocket Force University of Engineering, Xi” an 710025, China)

Abstract: The new active metasurface has the advantages of small size, lightweight and easy integration, so it has an
important application prospect in weapon radar intelligent stealth. Based on this, focusing on the requirements of radar
intelligent stealth for current weapons and equipment, this paper expounds the methods, approaches and performance
advantages of active metasurface in electromagnetic wave regulation, reviews the development history of various active
metasurface, and summarizes the research status and future development direction of active metasurface for radar intelli-
gent stealth. It provides the relevant theoretical basis and design reference for the wide application of active metasurface
in intelligent stealth of weapon equipment radar.

Key words: active metasurface, radar intelligent stealth, absorbing wave, scattering, amplitude-phase regulation of
electromagnetic wave
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Fig. | Representative achievements in the development of metasurfaces: (a) eight types of V-shaped antennas and their simulat-

ed wavefront™®’; (b) schematic diagram of optical lens based on hyperbolic phase distribution metasurface'*’; (c¢) phase gradi-
ent metasurface' ' ; (d) schematic diagram of a three-dimensional holographic imager based on a transmissive metasurface ' ;

(e) huygens metasurface element and the transformation from Gaussian beam to Bessel beam achieved®’; (f) the perfect absorber

for optical bands'*’
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Fig. 2 Digital coding and field-programmable metasurfaces(a) digital array diagram of 1-bit coding metasurface™ ; (b) simulated

scattering results of 1-bit coding metasurface field™'; (¢) 1-bit coding metasurface sample™'; (d) unit of 1-bit coding metasurface

and equivalent circuit of PIN diode™™”
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Fig. 3 Advances in dynamic regulation of active metasurfaces: (a) the geometry of the mushroom-like unit cell*’; (b) intelligent

metasurface with integrated gyroscope sensor'™”’; (¢) top and side views of the unit particle of the metasurface, sketch of the nonlin-

ear measurement system connections ™"’
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Fig. 4

and all thediodes are in off-state’™’; (c¢) the sketch of the proposed reconfigurable metasurface™’; (d) geometry of the proposed ab-

(a) Scheme of how the bias voltages are applied independently®”; (b) simulation results for all the diodes are in on-state

sorber unit cell, measured and simulated absorptivity of the proposed absorber'™”’; (e) ultra-wideband active metasurface absorber,

equivalent circuit model of PIN diode at ON state and OFF state , simulated and measured monostatic RCS reduction. ( Solid lines,

simulated results; dashed lines, measured results )77
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Fig. 5 (a) Metasurface's meta-atom'””’; (b) structure of the proposed metasurface's meta-atom, equivalent circuit of transmission

model of two different layers of metal patch™ ; (c) structure of metasurface's meta-atom'™ ; (d) multi layer transmission type

metasurface's meta-atom, far-field radiation pattern“g:
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Fig. 7 (a) Single layer flexible metasurface's meta-atom™ ; (b) metasurface's meta-atom, simulated reflection amplitude and

phase of unit element when the RD changes from 1 Q to 10 000 Q at 10 GHz, measured 2D far-field radiation patterns of the meta-

surface with four different amplitude-phase joint coding sequences®’; (c) double layer arrow metasurface's meta-atom, simulated

reflection amplitude and phase of unit cell, comparison of measurement and simulation results”®?’; (d) metasurface's meta-atom™';

(e) metasurface's meta-atom™ ; (f) metasurface's meta-atom, simulated reflection amplitude and phase of metasurface at a fre-

quency of 10. 0 GHz*"
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adaptively precise control of spatial EM reflection spectrum''®

[106] ,

(a) Schematic diagram of intelligent stealth”®’; (b) schematic of the frequency-adaptive intelligent metasurface for self-

' (¢) schematic of smart Doppler cloak''™'; (d) illustrative usage of

neuro-metamaterials in a security inspection system-'"*; (e) schematic diagram of chameleon-like intelligent camouflage metasur-

face system which can alter the spectra by target recognition™”’

cal illusion''®

mation metasurface’”’; (i) schematic diagram of optically transparent intelligent metasurface

'; (g) schematic of autonomous aeroamphibious invisibility cloak'

'; () schematic of the global metasurface design for intelligent opti-

"1 (h) diagram illustration of the proposed infor-
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