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Abstract: Thermo-optic modulators are key components of optical communication systems, and their performance di-
rectly affects system efficiency. With the development of silicon optothermonic technology, silicon thermo-optic modu-
lators have been widely used in optothermonic chips. Conventional silicon optical modulators are large in size and have
high losses. In recent years, researchers have proposed to use the slow light effect of photonic crystals to reduce the
footprint of modulators. Related studies have shown that these devices have advantages, such as small size and low driv-

ing voltage. However, the optical transmittance of thermo-optic modulators based on photonic crystals is still affected
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by defects caused by fabrication errors. Valley photonic crystal optical waveguides can achieve scattering-immune high-

efficiency unidirectional transmission, providing a new venue for realizing high-performance photonic devices. In this

paper, a new silicon thermo-optic modulator based on a valley photonic crystal Mach-Zehnder interferometer (MZI) is

designed. The electrical heating mechanism is introduced on one of the waveguides of the MZI. The thermo-optic effect

modulates the refractive index to achieve precise phase modulation of the transmitted light. The thermo-optic modulator

device has a small footprint of only 9. 26 um x 7. 99 um, which can achieve a high forward transmittance of 0. 91, an

insertion loss of 0. 41 dB, and a modulation contrast of 11. 75 dB. It can also be experimentally fabricated using comple-

mentary metal oxide semiconductor (CMOS) technology, so it will have broad application prospects. This modulation

principle can be widely used in designing different thermo-optic modulation devices.

Key words: silicon photonics, valley photonic crystal, Mach-Zehnder interferometer, thermo-optic modulator,

thermo-optical effect
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Fig. 1 Schematic diagram of the structure of the MZI thermo-optical modulator and the displacement of the interference peak:
(a), (b) Schematic diagram of the structure of the MZI electro—optic modulator based on valley photonic crystal (VPC) , in which
green and red colors represent low (a) and high (b) temperatures, purple and blue represent VPC1 and VPC2. (¢) Schematic of the
interference peak shift controlled by temperature change, where N, and N, correspond to the positions of the interference peaks at T,

and T, temperatures, respectively. T is the forward transmittance of the electro—optic modulator (EOM).
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Fig. 2 Schematic diagram of the structure parameters and photonic band diagram. (a) Schematic diagram of the initial structural
parameters. The parallelogram represents the original honeycomb lattice consisting of two air holes (A and B), where the lattice
constant ¢ = 0. 44 pm, the radius of the circular airhole is » = 0. 08 um, and the silicon substrate thickness is # = 0. 22 pm; (b)
Schematic diagram of VPC1 (left) and VPC2 (right) ; (¢) Photonic band diagrams of the initial honeycomb PC (red dotted line)
and VPC1 (blue dotted line) , where the blue rectangular marks the photonic bandgap and the gray shading area mark the air cone;
(d) and (e) geometry of zigzag-shape and beard-shape boundaries composed by VPC1 and VPC2; (f) and (g) Edge state band dia-
grams of zigzag-shape and beard-shape boundaries composed by VPC1 and VPC2, the supercells used are the blue rectangular re-

gions in (d) and (e).
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Fig. 3 Schematic diagram and the optical path of MZI structure, transmittance spectra and the electric field intensity distributions

in the MZI: (a) Schematic diagram and the optical path of MZI structure based on VPC (AL = 5a); (b) Transmittance spectra of AL =
2a, Sa, Ta, 10a; (c¢) (d)The electric field intensity distributions in the MZI at 1491.88 nm and 1 484.25 nm when AL = 5a.
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Fig. 4 Thermo-optical modulator temperature distribution, electric field intensity distribution, and moving trend of interference

peak positions at different voltages: (a) Temperature contour plots of the MZI electro—optic modulator at different voltages; (b) Distri-

bution of the electric field intensity of MZI at 1 528.95 nm at voltages of 10 mV and 35 mV ; (c) Plot of temperature versus voltage of

L1;(d) Plot of transmittance versus voltage in the MZI at 1 528.95 nm; (e) Plots of the interference peak positions at different voltages
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To1R 25 FIA R 2 MBS GG LT R EEARAE . I,
10% (1) il 1 12 25 I 23 52 0 4 F b 4 30 4 0 08 0t 4%
MIPERE , Bk T IS SEPR i A AT AT

25 PR A SCBEH IR 9T R E A O T A
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PR LA 4R ABREMCE 0. 41 dB, 6.7 GBAY I
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