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Lightweight remote sensing multimodal large language model based
on knowledge distillation
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(1. Key Laboratory for Information Science of Electromagnetic Waves (MoE ), Fudan University , Shanghai
200433, China;

2. Image and Intelligence Laboratory, School of Information Science and Technology, Fudan University, Shanghai
200433, China)

Abstract: Remote sensing multimodal large language models (MLLMs), which integrate rich visual-linguistic modal in-
formation, have shown great potential in areas such as remote sensing image analysis and interpretation. However, exist-
ing knowledge distillation methods primarily focus on the compression of unimodal large language models, neglecting
the alignment of features across modalities, thus hindering the performance of large language models in cross-modal
tasks. To address this issue, a lightweighting method for remote sensing MLLMs based on knowledge distillation is pro-
posed. This method achieves effective alignment of multimodal information by aligning the outputs across modalities at
the feature level. By introducing the reverse Kullback-Leibler divergence as the loss function and combining optimiza-
tion strategies such as teacher mixed sampling and single-step decomposition, the generalization and stability of the stu-
dent model are further enhanced. Experimental results demonstrate that the proposed method achieves higher accuracy
and efficiency in four downstream tasks of remote sensing image scene classification, visual question answering, visual
localization, and image description, significantly reducing the number of model parameters and the demand for computa-
tional resources, thereby providing a new solution for the efficient application of MLLMs in the field of remote sensing.
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3.3 AEES THEREERT LS o

FEY 3 BE ) 2 6L 22 0 5 UG F b
DUFD AT 55 v, o B UE T Y O sk i RE L TR AT
TR T AR BE X L5 2 HT BT AR R
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BRI ALS B A AR GeoChat—7B A5

1) #] 4f #% A GeoChat=7B , 52 DA Vicuna-7B-
v1. SYER IR AL 45 G i 2% CLIP-ViT Al
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AR ] B LAl 454 , LA Vicuna—13B-v1. 5 My i i
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1, [FRESE T8 R LA A B s 42 HEA TN o
BB HA 130/ 118 B MLLM .

3) SR SRL AR ZR IR AL 5 A 2 A A T
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FEORIET Google Earth, F 7 PEAL L AR 2% > R
2 ] BERITE L oA F R 3 AR SFOUR AT 55 v i 1
fig. AFOK BRI R ST 600x600 15 %, I o HER
FEPEEA AN (5 B ] TR 2 T B AL
5T

BT AID Fidag 45 , UCMerced U8 8E7E 21T
HEAREZER . B 2,100 KEME, #2104
THOR S, FERE TS 2 MR %8
Y B 1 BB AT AR AR A 23 o, gk MR R
o 256x256 % 3K , HoAi A5 By 455 T AID , (R i 2 .
PREGHE o FEBHE AR UE T T , UCMerced E22K H 32
b ST A R AL AS SR, TR TR E A 2R A
5P ZEBIETE

2) SR AR 5 o b

FAT ARG I A7 2850, -2 SRAH — A1)
S TR A S UG, AN N BUR ST R 22
bel 557, TESCI Y, R I B A 500 KRR
(Overall Accuracy, OA) FIZFREA Y 5 0 F RS &
(Average Accuracy, AA)VENIEFITEANFE 5 , [F] A1)
IR B HE M gt rT Ak o 2 g R . Hop, OA Jd i
THRTHLIE B 70 ZE AR A S SRR AR EORY LE 191 DA
BT AT DLt B AR 2R REA IR B0 T, X8 2 1l
Y B W o 2R IR T VAL R IZ AL TR BE s AA 2
XoF 2% 2 A RS A TP 2445 B A FE B L T S 4 T MY
PEAG I AL A RR L 25 5 TR VA 0 U DA M08 X iR
R ) N 235 2R L S AR 28 22 [] 1% B, BE 6% T
Hh S BSR4 73 SR T o

R34 R T A A BT ATD £ 4k 5 Fl
UCMerced 50464 I 0 45 5, 4 S ML bR
ido ZEURS 192 A AU GeoChat—7B 7E ATD H(4i 4E

(Dhttps://captain—whu.github.io/AID/
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F 3 MLLM (MiniGPTv2™" | LLaVA-1. 5" H1 Qwen—
VL) P KW IR A5 GeoChat—7B AYAH | FE 2 bk
T B GeoChat—13B AR 2, B3 T HH IR A2
TERE ST o [T, AA Al 3F — 20 S i 1 2808 I A AU 1Y
BT . ATH &, X F 2% 7R R ZE R
R SR T S I KL AR {45 2% AR 4580 SC T 0
BEAY G oA rh i R TERRE S OB AR
BT L5 230, B G M B ZOM AL 1T
AT B 4 T b 3 A e R 2o S R RS AU A TS
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Table 3 Zero—shot scene classification OA comparison
of different models on AID dataset and UC-
Merced dataset

LAY AID  UCMerced
MiniGPTv2 2 12.90 4.76
LLaVA-1.5 2% 51.00 68. 00

Qwen—VL 7 52. 60 62. 90
GeoChat-7B 67.20  84.43
GeoChat-13B 69.53  90.43
Ours (GeoChat-7B) 67.30  91.24

x4 AEEBFE AID HIEEF UCMerced 15 5E EHE

BARGRSEEAEELLR

Table 4 Zero—shot scene classification AA comparison
of different models on AID dataset and UC-
Merced dataset

FELAY AID UCMerced
GeoChat-7B 55.88 84.48
GeoChat-13B 56. 59 90. 43
Ours (GeoChat-7B) 55.96 91.24

BT FRSE R IR IA MR — 2D RE T FRATHY
BATE G 500 AT 55 i i vERE . B4 R T 28RS
HIFAYAE AID A1 UCMerced $0 455 L I EFEAR Y =
SPRIBEH R, IWE 4(a) AT LLE H, AT B RIFE
AID BHs 5 1Y 28037 52600 E IS T IR Sy
SYZEPERE 2280 o TR BRI Kl AR 1 280 o
i i, T BRI 2 ) B R WS I RRAE , o i
PRSI 268 (BB AT H AT SRR B 1 AT 32 19 o3
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HLER(67.30%) . M 4(b)Ha] LIE H, 4 UC-
Merced FUHE 52 73 HE R AH X BAIS , B 2B AR 1, 3 380
PEHIAE SIS ] “agricultural” F1“ dense residential” I,
F 5 “runway” L I “medium residential” 2 JI| 75 45 ¥,
RRAE L AR U, BSR4 45 R, 3R
TR RIATY SR B 6% A8 o Ath iy A7 200 1 BUS-A 5510% 43
KGR BRMER RIRE] 91. 24% ., X & i TR
AT B FF R R v R FH Y B ) KL LR SN 1 24
AR Xof S DR AR 2 AR AS R AR A5 2 >, AT R
T HAE A GeoChat—13B Y 90. 43% 432545 i

LA AT IR VB HE MR A5 R R, R85 1 Geo-
Chat—7B i BUAE 5 5t 70 AT 55 AU R AR T R
RIS, TR B BB A R0 X R PR B S AT A
RIEFZE N Z eV, 3 — 250 1 A SCEE H A 3R
TR TR Z AT 55 T A 3k .
3.3.2 MEEE

DR g6/ S

FATRH T RSVQA-HRBEN “ Fil RSVQA-LR-
BEN WA FH T 1% B 9 7] 245 (Remote Sensing Visu-
al Question Answering, RSVQA) 1T 55 A9 3 ¥ K 45
LU B AETPEAR AR X 12 R R ) B AR AN AE H SRS
HIEA T AENEREZMGES . RSVQA-HRBEN
BAE AL 10,569 5K & 73 P i SRR Bo A Rk
1,066,316 1~ Z HEAL I ] - 22 28 %), W 55 A7 7
LB RO AR, & A 25 SR 2 o3 B R
) 240 47 B P S HEREBE 1. RSVQA-LRBEN MU 42
B 772 5RAR S HE R MG RN 77232 4 [l J -2 52 %t []
TN FE AT L LU L & WAl 43 2R L Jr
BT S5 38 H T B AR AR o0 B R 45 T iz 4k
[

2) LB RS A

FRATT A AL VT S TR [ 25 I B 1% ] KR
Ji) SRR P B ARG B OA LA AR [T 452800 R 4R
A 1 F- 2 {8 (mean Overall Accuracy, mOA ) 3 ffif
AR AL (0] AT 55 P A MERR P . 7E RSVQA-
HRBEN 1 RSVQA-LRBEN 45 £ v, 43 51 &1 X% A
AR 133 AR AN [F) 47 5 CANAEAE v L LR E Ik 2
B5) N M AERR 3, DLTTAR S 2 X () Ry 2L ik A0 [l 2%
(IR

5N T ANFEBAAE RSVQA-HRBEN F1 RS-
VQA-LRBEN (#6492 i 45 51 | e fH45 - IR

(Dhttps://zenodo.org/records/6344367
@https://zenodo.org/records/6344334
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(b)
4 FATHAITE AID I UCMerced B3 4 B AREA I 5
SAIRIBEHERE: (a) AID B 4E ; (b) UCMerced 54l 4E
Fig. 4
Ours (GeoChat-7B) on AID and UCMerced datasets: (a) AID
dataset; (b) UCMerced dataset

Zero-shot scene classification confusion matrix of

RARIC . TEIZALGE ) 24 55 v, 38 2 1) B AL S i
MBI KA ZE BR R Sk BT B R/ AR R I T S
R SRS, 78085 122 A 18 GeoChat—
7B 7£ RSVQA-HRBEN F1 RSVQA-LRBEN I i % &
T R LAY GeoChat—7B L Kz HoAl MLLM [R5 2
T Z T Zi R GeoChat—13B HUAS EE , 3L T
HER K HEFERE 1, BB A RL R 5 1 SR EHR A 1Y
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Table 5 Quantitative results of different models on RS-
VQA-HRBEN and RSVQA-LRBEN dataset

HRBEN LRBEN
f R bk
- TEAE B mOA  TRfE W mOA
24t
MiniGP-
[ 40.79 50.91 46.46 55.16 55.22 39.00 54.96
TV2 20]
LLaVA-

1. 5124 69.83 67.29 68.40 55.46 68.20 59.00 62.77

Qwen-VL 7 66.44 60.41 63.06 38.57 67.59 61.00 55.35
GeoChat-7B  57.65 80.84 70.63 90.86 90.25 94.00 90.59
GeoChat—13B 56.05 83.02 71.15 91.20 91.75 97.00 91.60
Ours (Geo-
Chat-7B)

60.03 83.30 73.06 91.91 92.88 95.00 92.50

3.3.3 MEREMSEGHEL

1) SEB AR S S 1T i A

VAL BE T8 LA 55l 3 2 PR 45 20 ) B A
£E SAMRS"™ I 5 1 R 1513545 4 ML 5 40 A A ) 1Y)
g 3 T 3 BT A R 3 R o gk R o L A
7653 > 5| H 7] 5 (refer) | 758 /> %€ 37 [A] & ( ground-
ing) Fl1 555 & DL AR a8, ffi F accuracy@0. 5 Al
accuracy@0. 25 /E 1A 485 , BT &, 2 B Y
1 FHE 5 ELSC 3 BHE Y FE & JE (Intersection over
Union, loU) 4335t 0. 5F10. 25, WA Ay fEafs .

XF T EHR R A 55, ROUGE-1 i &5 A il SCA
525 oA AR [E ) — o (RS ) /Y LA
ROUGE-L K e K24 36 7 /7 51 19 K J& ; METEOR
W26 2% B 2 MR 2R ORI 5 A B T4
SRCAG , DT BE 4 TR L B A5 8 A ol ) i34 5 225 4l
IRTETE SCAANE A VERCREE , DL A [l 45 AL A

(Dhttps://github.com/ViTAE-Transformer/SAMRS
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T IRAT 55 FP AR AR A DX B R 5 2 5 R 2 )
AR S A o o
2) XWHERSHH

P 52 AT 55, BIAE 40 8 e X IUIE L T, 88
RIGEFR A TIX KA PR 5 B . IFE 61T I, 7%
5 B2 A BB GeoChat=7B 7695 & (AT 45 | &
FZETF MiniGPTv2™ FI IR LR GeoChat-7B 5 #( i
% GeoChat—13B.

F6 AEEBEMITEMIS EHMERELER
Table 6 Performance comparison of different models

on visual grounding task

LAY accuracy@0. 5 accuracy@0. 25
MiniGPTv2 12 10. 8 30.9
GeoChat-7B 11.2 33.9
GeoChat—13B 14. 1 35.7
Ours (GeoChat-7B) 14.4 35.9

R TIEIR T AR BLAE BMGAAR 55 L ERE L
B R g5 R bR g . WL R
L, A DX IR A 5l IR AT 55 v, 2R AR G A A R
GeoChat=7B fE ROUGE #1 METEOR 4% 7 it ¥4 T
MiniGPTv2™" | 1] i #5 5 GeoChat-7B 5 #( Vi 451 71
GeoChat-13B,

R ZE IR R, ZE 5 122 A GeoChat-7B
R % B h AT SRS A A0 o 67 S AR A= i, 5 B
B X3 R R IR 58 SR UC IE , i — 25 B UE T AR SCRT I
1Y ZE MR A B R M i A O, s T H
TEZBSAL S Th Ry T T .

x7 AREBEEGHERES EHREREIRERELLER
Table 7 Region level captioning performance compari-

son of different models

Y ROUGE-1 ROUGE-L.  METEOR
MiniGPTv2 [ 32.10 31.20 10. 00
GeoChat-7B 86. 64 86. 59 62.27
GeoChat-13B 87.10 87.05 63. 18
Ours (GeoChat-7B) 87. 80 87.75 63.55

FeA175 i, AN rad e bt DAL 08 FITE 5 B2
RAEAE [R] — 1 SO AR AT 2800 5F , I A (T TSR
REAS T4 i PR PR 5 SO Z IR G AR, kb 1
ik Xk 5 AN K T RE S B 2 A R A A B 22 AT,
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FERE AT 55 L AR R R 22 5 . Bk
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Fig. 5 Visual results on visual grounding task
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1,18 B YKL (Floating Point Operations Per Second ,
FLOPS) 47 T e #r . 3R 8 4 il T A SC = Ffifix
TUAEZ K5 FI FLOPS J5 T B0 LUAE A0 . 45 R0,
GeoChat—13B A ZUlis L H AT 2 130 1419 2 Kkt
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KNG AU RN 7042, AHE T ZOMA AL 38/ 1 2
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2% BE 5 T A AL A as SR 5 T, 28 1S B9 Geo-
Chat-7B ##1 f#) FLOPS 12 {2 3% T [, il /b T 249 48%,
PE— PR T A EALAT 55 PERE T BTl TH I BT
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Table 8 Parameters and FLOPS of different models

A e FLOPS
GeoChat=7B 6760.72 M 6904.53 G
GeoChat-13B 13048.66 M 13377.05G
Ours (GeoChat-7B) 6760.72 M 6904.53 G

3.5 NS

A DA _b S 25 SR AT, A SC R AR T 1 7R
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ALREEIT
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