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Effect of extrinsic resistance on noise performance for deep submicron

MOSFET
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Abstract: This paper investigates the impact of extrinsic resistance on the noise performance of deep submicron
MOSFETs (metal-oxide-semiconductor field-effect-transistor) using the noise correlation matrix method. Analyti-
cal closed-form expressions for calculating the four noise parameters are derived based on the small-signal and
noise-equivalent circuit models. The results show strong agreement between simulated and experimental data for

MOSFETs with a gate length of 40 nm and dimensions of 4X5 wm (number of gate fingers X unit gate width.
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Introduction
While MOSFET modeling is well-established for dig-

ital and low-frequency analog applications, extending
these models to high-frequency domains introduces signif-
icant challenges. At RF (radio frequency) frequencies,
understanding and modeling thermal noise become criti-
cal, as it emerges as the dominant noise source in MOS-
FETs "', Analytical expressions for noise parameters
are essential for optimizing the noise performance of
MOSFETs used in low-noise amplifiers. These expres-
sions offer valuable insights into the underlying physical
mechanisms and enable an assessment of how various pa-
rameters in the small-signal equivalent circuit impact per-
formance ',

However, modeling RF noise is complicated by its
sensitivity to parasitic and coupling effects associated
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with the gate, transmission lines, pads, and lossy sub-
strates """\ For GaAs FETs, Fukui ' proposed an
empirical relationship between the noise figure and cir-
cuit parameters using fitting coefficients. Similarly, A.
Cappy developed simplified analytical formulas for the
minimum noise figure, noise conductance, and optimal
source impedance, based on a fundamental equivalent
circuit that accounts for intrinsic gate-to-source capaci-
tance and extrinsic gate and drain resistance """

This study introduces analytical formulas for the
noise parameters of microwave MOSFETSs, derived from
a small-signal and noise-equivalent circuit model that in-
corporates the influence of extrinsic resistance. The pa-
per is organized as follows: Section II details the noise-
equivalent circuit model and the derivation of noise pa-
rameter expressions. Section III presents experimental
findings, and Section IV concludes the study.
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1 Theory Analysis

1.1 Intrinsic equivalent circuit model

Figure 1 depicts the intrinsic small-signal and PRC
(Pucel) noise-equivalent circuit model of the MOSFET.
In this model, C, accounts for the combined gate-chan-
nel capacitance and gate-source overlap capacitance,
while C,, predominantly arises from the gate-drain over-
lap. The drain-to-source capacitance is represented by
C,. Additionally, the transconductance is denoted by
g., the drain conductance by g,, and 7 represents the
time delay associated with the transconductance.

The gate-induced noise current ijand the drain-

channel noise current i, are represented by the following
expressions '

i2 = 4kTAfw*C* Rlg, , (1)
i2 = 4kTAfz, P . Q)

The cross correlation between i; and i} can be ex-

pressed as:

= 4kTAfwC, CVPR  , (3)

;:(l

here, R and P represent the gate and drain noise model
parameters, respectively, while C denotes the correla-
tion coefficient.

Based on the noise correlation matrix method "' ,
the four noise parameters are derived as follows :

wC
F..=1+2k+—F

~JPR(1-C*) , (4
gmkl
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Fig. 2 Extrinsic resistance R, and R, n01se model of MOSFET
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_ R~
G,, = oC, P (1-2¢C?) , (6)
R
B, =-w[(C,+C,)~- C/;Cgs] , (7)
where
gt 2w2ng(T + Cgngs) ®)
g+ wZCiR;) ’
w’C,,
ky=—%[PC,R, - CVPR ( +CR +7)],(09)
8uky .
here, F, represents the minimum noise factor, R, is the

noise resistance, Y, is the optimum source admittance,
while G, and B,, denote the optimum source conduc-
tance and susceptance, respectively.

1.2 Intrinsic equivalent circuit model of effect of R,
and R,

The small-signal model incorporates three extrinsic
resistances: R,, which accounts for the distributed ef-
fects at the gate, and R, and R,, representing the source
and drain resistances, respectively. These resistances
are primarily influenced by the resistance of the lightly
doped extensions of the source and drain diffusions. In
the context of cascade noise figure calculations, R, and
R, play crucial roles in determining the noise perfor-
mance of the MOSFET, whereas the impact of R, on
noise performance is minimal and is typically negligible.
Figure 2 illustrates the noise model of the MOSFET, em-
phasizing the extrinsic resistances R, and R..

The two noise sources, e: and e’ represent the noisy

behavior of the access resistances R, and R, and are ex-
pressed as:

el = 4kT,qRAf (i = g.) , (10)

where ¢ is the electronic charge, k is Boltzmann’s con-
stant, and T, is the ambient temperature.

The corresponding chain noise correlation matrix
can be expressed as follows :

R,+R,+R Fun =1 _

SRV,
C\' =4kT| F_ . 1 RY
T nd opt ‘Y‘)p‘

(11)

Therefore, the four noise parameters are given by :
R =R, +R +R, , (12)

R.B,,
By = el e
R R.R,B:,

G = /RINT (G, )+ (RTgT); , (14)
Fo =Fa+2(RVRY -RG,) , (15)

When take no account of C,, and g,., the above ex-

pressions are simplified as:
P

R,=—+R,+R, , (16)
gll’l

«d
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/(Rg+Rs)gm(P+R—2C,ﬁ)+p3(1 —c)

opt & P +(Rg +Rs )gm
. (18)
2wC . )
Fo=14222 [(R 4R )g, (P+R-2C VPR J+PR(1-C")
. (19)

Figure 3 shows the noise parameters as a function of
the sum (R, +R). It can be observed that the minimum
noise figure NF . and the equivalent noise resistance R,
increase as (R, +R.) increases. The optimum source con-
ductance G,, remains roughly independent of (R, +R,) ,
while the absolute value of the optimum source suscep-
tance B, decreases with an increase in (R, +R_).

1.3 PAD parasitic

Figure 4 illustrates the substrate resistance R, noise
model of the MOSFET. It can be seen that the pad para-
sitic consist of two elements: R and C . The parasitic
associated with the pad due to substrate losses are repre-
sented by the capacitor €, in series with the resistor R .

For shunt RC network (as shown in Fig. 4), the sig-
nal parameters can be expressed as follows :

1 0
Apyp = |:M 1 :' , (20)

JjoC,
M=——7" , (21)
1 +jwR,C,

opt

with

It should be noted that the correlation noise matrices
for series and shunt RC networks are non-zero because
the two-port networks are passive and lossy.

Co" = 4kTRe [ Zyy, | = 4kTR,,gB i] , (22)
Y = 4kT[0 O} , (23)
0 N
with
R
e , (24)

N=— =
R* + 1/(wC)?

pg

In noise analysis applications involving the intercon-
nection of two two-port networks, whether in cascade or
otherwise, the resulting correlation matrix is related to
the correlation matrices of the original two-port networks
by "

Cy = O + A, O ALy ., (25)

It should be noted that a more complex relationship
is obtained for the cascading connection of networks,
which also includes the chain matrix A,,, of the first two-
port.

P -1 :
S R - )

RN ( ‘ y N

opt

] . (26)
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The corresponding correlation noise matrix in imped-
ance representation can be expressed as follows :

RP:\D - RINT (27)

. " wC,
B = BN -, (28)

1+ (prngg)
GPAD - /(GINT)Z + K( Fiﬁ: _ 2GINT + K) (29)
opt opt RINT opt ’
Fod =Fu + 2R (K + 6.0 - 6,0) . (30)
with
R c.r

— m’,(w P%) S , (31)

1 +(wR,C,)

From Eq. (27), it is evident that the equivalent
noise resistance is independent of the pad parasitic.
Figure 5 shows the three noise parameters as a function
of R, and C . It can be observed that the minimum noise
figure NF,, increases with an increase in R, and C_,
with a more significant effect observed for the pad capaci-

tance C,. The optimum source conductance G, also in-

pt
creases with an increase in R, and C, The optimum
source susceptance B, remains independent of R, but in-

creases with an increase in C .
2 Experimental Verification

To validate the derived expressions for the extrinsic
resistances, measurements were conducted on a 4 pwmX
5 pm (number of gate fingers X unit gate width) NMOS-
FET with a 40 nm gate length, up to a frequency of 40 GHz
for S-parameter characterization. High-frequency noise
parameter measurements were performed on-wafer over
the 8-26 GHz range using an ATN microwave noise mea-
surement system.

2.1 PAD parasitic

Table 1 presents the MOSFET parasitic parameters,
while Table 2 summarizes the extracted values of the
small-signal elements at a constant drain-source voltage
Vs =1.2 V. Fig. 3 compares the measured and modeled
S-parameters for the 4 pmx5 wm MOSFET across the fre-
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Table 1 The MOSFET parasitic parameters
&1 MOSFET F4E38H

Parameters Values Units Parameters values Units
C 230 ¥ R, 30 QO
Ch 230 fF R, 5 QO
C o 2 F¥ R, 7 QO
R 4 QO R 4 QO

=25- Measured

Table 2 Intrinsic parameters (V =1.2 V) Modeled
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quency range of 1 GHz to 40 GHz. The modeled S-pa-
rameters show excellent agreement with the measured da-
ta, validating the accuracy of the model.

2.2 Noise model verification

Figure 6 shows the comparison between the mea-
sured and modeled noise parameters for the 4 pmX5 wm
MOSFET under the bias conditions V. =1.2 V and V, =
1.2V, demonstrating excellent agreement across the en-
tire frequency range.

Figure 7 presents a comparison of measured and
simulated noise parameters, confirming the validity of
the proposed method through strong agreement. As
shown in Fig. 7(a), the influence of the pad and the
combined resistances R, and R, on the minimum noise fig-
ure NF . is evident. To minimize NF min , it is crucial
to keep R, and R, as low as possible. In Fig. 7(b), it can
be seen that the equivalent noise resistance R, is affected
by R, and R. Fig. 7(c) shows that the impact of R, and
R, on the optimum source conductance G, is minimal.
Lastly, due to the large pad capacitance C (exceeding
200 fF) , the effect of C,, on the optimum source suscep-
tance B, , is significant, as illustrated in Fig. 7(d).

opt
3 Conclusions

This paper introduces an approach for analyzing the
impact of extrinsic resistances on the noise performance
of deep submicron MOSFETs. Analytical expressions for
the noise parameters of microwave MOSFETSs are derived
using a small-signal and noise equivalent circuit model
that incorporates the effects of extrinsic resistances. Ex-
cellent agreement is achieved between simulated and
measured results up to 26 GHz for 4 pmx5 wm (number
of gate fingers X unit gate width) MOSFETs with a 40 nm
gate length.
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