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Cavity-enhance absorption spectroscopy for the measurement of
Oxygen concentration

SONG Jun-Ling', RAO Wei', WANG Lin-Yan', ZHU Xiao-Hui’, WANG Dian-Kai', FENG Gao-Ping'
(1. State Key Laboratory of Advanced Space Propulsion, Space Engineering University, Beijing 101416, China;
2. Troops 63810, Wenchang 571300, China)

Abstract: A high-performance oxygen detection system enables real-time online monitoring of critical parameters such
as oxygen concentration and flow velocity inside the engine, thereby ensuring optimal operational performance. In flow
field testing for engines such as scramjets and aircraft engines, the complex environment—characterized by high temper-
atures, high pressures, high velocities, and limited measurement space—poses significant challenges to high-perfor-
mance flow field diagnostics. To address these challenges, an oxygen concentration measurement device based on cavi-
ty-enhanced absorption spectroscopy (CEAS) was developed. The system incorporates an embedded optical probe
structure and is equipped with multi-directional alignment stages at both the transmitter and receiver ends, enabling
straightforward optical path adjustment and alignment for practical engineering applications. Experimental results indi-
cate that, under static conditions, the system measured an oxygen concentration of (20. 846+0. 97%) , showing good
agreement with the reference value. In shock tube experiments, although vibrations and airflow disturbances during op-
eration affected measurement accuracy, the system successfully captured three distinct states: before the arrival of the
incident shock wave, after the incident shock wave passed but before the reflected shock wave arrived, and after the re-
flected shock wave passed. The measured trends in oxygen concentration align well with theoretical predictions.

Key words: cavity-enhanced absorption spectroscopy, Oxygen concentration, optical probe, shock tube experiment
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