基于时空信息增强的大核卷积单光子成像算法研究
DOI:
CSTR:
作者:
作者单位:

中国科学院微电子研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Research on Single-Photon Imaging Algorithm Using Large-Kernel Convolution with Spatial-Temporal Information Enhancement
Author:
Affiliation:

Institute of Microelectronics of the Chinese Academy of Sciences

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于单光子雪崩二极管(Single Photon Avalanche Diode, SPAD)的单光子三维成像技术虽已得到快速发展,但在强噪声下恢复深度信息时仍面临挑战,特别是器件的同步触发工作模式进一步放大了噪声的影响。本文通过引入误差函数构造了一个能够描述复杂成像环境的光子探测概率响应模型,从而实现了大规模强噪声单光子数据集的构建。提出一种专为单光子三维成像设计的鲁棒方法——时空增强网络(Spatial-Temporal Enhancement Network, STE-Net),其核心是创新的时空信息增强策略(Spatial and Temporal Information Boosting Strategy, STIBS),通过多种几何形态的3D卷积核充分挖掘三维卷积的潜能。基于STIBS,本文设计了一个简洁高效的特征增强模块作为通用预处理组件,通过开展基于STIBS的轻量化设计,借鉴大核卷积思想,构建了能够融合浅层与深层特征的特征融合主干网络。在模拟数据与真实数据上的大量实验表明,所提出的STE-Net在不同信背比(Signal Background Ratio, SBR)的各种场景下均实现了卓越性能。量化分析结果显示,当平均信号光子为0.02、平均噪声光子为0.5时,STE-Net相比其他最优方法在PSNR指标上提升0.55 dB,RMSE误差降低7.2%。

    Abstract:

    Single-photon 3D imaging based on Single-Photon Avalanche Diodes (SPAD) has witnessed rapid development, yet continues to face challenges in depth information recovery under strong noise conditions, particularly as the synchronous triggering mode of the devices further amplifies noise interference. This paper constructs a photon detection probability response model through the incorporation of error functions, capable of characterizing complex imaging environments, thereby enabling the creation of large-scale single-photon datasets with strong noise. We propose a robust approach specifically designed for single-photon 3D imaging—the Spatial-Temporal Enhancement Network (STE-Net). Its core innovation lies in the Spatial and Temporal Information Boosting Strategy (STIBS), which utilizes 3D convolutional kernels of diverse geometric configurations to fully exploit the potential of three-dimensional convolutional feature learning. Building upon STIBS, we design an efficient feature enhancement module serving as a universal preprocessing component. Through lightweight architecture development inspired by STIBS and incorporating large-kernel convolution concepts, we construct a feature fusion backbone network capable of integrating both shallow and deep features. Extensive experiments on both simulated and real-world datasets demonstrate that STE-Net achieves exceptional performance across various scenarios with different Signal-to-Background Ratios (SBR). Quantitative analysis reveals that under conditions of 0.02 mean signal photons and 0.5 mean noise photons, STE-Net achieves a 0.55 dB improvement in PSNR and reduces RMSE by 7.2% compared to other state-of-the-art methods.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-11-24
  • 最后修改日期:2026-01-27
  • 录用日期:2026-01-27
  • 在线发布日期:
  • 出版日期:
文章二维码